Publications by authors named "Yangjun Liao"

Point-of-care (POC) nanosensors with high screening efficiency show promise for user-friendly manipulation in the ever-increasing on-site analysis demand for illness diagnosis, environmental monitoring, and food safety. Currently, inspired by the merits of integrating advanced nanomaterials, molecular biology, machine learning, and artificial intelligence, lateral flow immunoassay (LFIA)-based POC nanosensors have been devoted to satisfying the commercial demands in terms of sensitivity, specificity, and practicality. Herein, we examine the use of multidimensional enhanced LFIA in various fields over the past two decades, focusing on introducing advanced nanomaterials to improve the acquisition capability of small order of magnitude targets through engineering transformations and emphasizing interdomain fusion to collaboratively address the inherent challenges in current commercial applications, such as multiplexing, development of detectors for quantitative analysis, more practical on-site monitoring, and sensitivity enhancement.

View Article and Find Full Text PDF

Engineered collaborative size regulation and shape engineering of multi-functional nanomaterials (NPs) offer extraordinary opportunities for improving the analysis performance. It is anticipated to address the difficulty in distinguishing color changes caused by subtle variations in target concentrations, thereby facilitating the highly sensitive analysis of lateral flow immunoassays (LFIAs). Herein, tremella-like gold-manganese oxide (Au-MnO ) nanoparticles with precise MnCl regulation are synthesized as immuno signal tracers via a facile one-step redox reaction in alkaline condition at ambient temperature.

View Article and Find Full Text PDF

Stimulated surface-enhanced Raman scattering (SERS) in combination with engineered nano-tracer offers extraordinary potential in lateral flow immunoassays (LFIAs). Nonetheless, the investigation execution of SERS-LFIA is often compromised by the intricacy and overlap of the Raman fingerprint spectrum as well as the affinity-interference of nano-tracer to antibody. To circumvent these critical issues, an engineered core-shell multifunctional nano-tracer (named APNPs) with precise control of the size of nano-core (AuNPs) and coating of the nano-shell (Prussian blue nanomaterials) is prepared for SERS-LFIA via a modified enlarging particle size and coating modification strategy.

View Article and Find Full Text PDF

Ractopamine (RAC) and clenbuterol (CLE) are feed additives with adverse effects of consuming too much to food safety. It is necessary to develop an efficient and accurate colorimetric analysis method for immune-based detection of RAC and CLE. Traditional human-vision-based colorimetric analysis for lateral flow immunoassay (LFIA) is non-quantifiable and low-in-automation, while container-based and analysis-instrument-based methods are unrepeatable and high-cost.

View Article and Find Full Text PDF