Superhydrophobic surfaces demonstrate excellent anti-icing performance under static conditions. However, they show a marked decrease in icing time under real flight conditions. Here we develop an anti-icing strategy using ubiquitous wind field to improve the anti-icing efficiency of superhydrophobic surfaces during flight.
View Article and Find Full Text PDFEffect mechanisms of the undercooling degree and the surface configuration on the ice growth characteristics were revealed under micro-droplets icing conditions. Preferential ice crystals appear firstly on the surfaces due to the randomness of icing, and obtain growth advantages to form protruding structures. Protruding structures block the incoming droplets from contacting the substrates, causing voids around the structures.
View Article and Find Full Text PDFThe controllable spontaneous transport of water droplets on solid surfaces has a broad application background in daily life. Herein, a patterned surface with two different non-wetting characteristics was developed to control the droplet transport behavior. Consequently, the patterned surface exhibited great water-repellant properties in the superhydrophobic region, and the water contact angle reached 160° ± 0.
View Article and Find Full Text PDFThe relation between polymer molecular chains arrangement and ice adhesion was studied at the molecular scale, and the energy states of water molecules on the poly(tetrafluoroethylene) surface were analyzed to explain the energy essence of ice adhesion. The ice adhesion on crystalline poly(tetrafluoroethylene) displayed a clear anisotropy phenomenon. Further research proved that the energy states of water molecules along the vertical direction of the molecular chains fluctuated regularly, and the water molecules in gaps between molecular chains were in the energy troughs, leading to the formation of energy traps.
View Article and Find Full Text PDFThe surface with the gradient non-wettability intensely appeals to researchers because of its academic significance and applications for directional droplet movement. Herein, we developed a homogeneous structure superhydrophobic surface with the gradient non-wettability by a combination strategy of chemical etching and vapor diffusion modification. As a consequence, the as-prepared surface exhibits a remarkable gradient characteristic of water repellency, and the water contact angle is mainly located within the range of 162 ± 0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2020
Heterogeneous nucleation is decided by many factors, and surface morphology is one of the most important elements. This paper reports the selective ice nucleation and growth process on a series of nanorods with different inclinations, which were rarely mentioned in previous research studies. It is found that the nanorods with special inclinations can cause the selective nucleation of ice crystals because of the spatial geometry matching.
View Article and Find Full Text PDFFreezing is a spontaneous phase transformation process, which is mainly governed by heterogeneous ice nucleation. This work aims at the discussion of the roles of nanostructure geometrical features in interfacial ice nucleation. Two kinds of superhydrophobic nanostructures with sealed layered porous and open cone features were designed and fabricated by means of wet-chemical processing methods.
View Article and Find Full Text PDF