Spectrochim Acta A Mol Biomol Spectrosc
February 2025
One possible way to address the shortcomings of current acid detection is to add fluorescence detection capabilities, however, there is little data regarding wavelength-based luminescence sensing, which makes possible for the naked eye to perceive various colors through wavelength variations. In this paper, we achieved turn-on response and wavelength-based luminescence sensing on acids detection by using donor-accepter complex Fe-L, which display significant fluorescence discoloration in the presence of a wide range of inorganic and organic acids, including benzoic acids, providing the fluorescence response for a more intuitive and convenient acid detection. The simultaneous achievement of fluorescence enhancement and color change as the acid concentration changes enables visual detection of the acid concentration, which provides a foundation for future research into convenient detection methods for various types of acids.
View Article and Find Full Text PDFAtmospheric water harvesting has emerged as an efficient strategy for addressing the global challenge of freshwater scarcity. However, the in being energy-consuming water-collecting process has obstructed its practicality. In this work, a soft drain bed, which was composed of hydrophilic cloth and hygroscopic gel, has been demonstrated to capture atmospheric water effectively, followed by converting it into liquid water spontaneously and sustainably, under all-weather humidity conditions.
View Article and Find Full Text PDFIron(II)-triazole coordination polymers have attracted considerable interest for their synthetic versatility, which allows tuning their spin-crossover (SCO) properties. Embedding SCO solid particles in sponge matrices is a simple, powerful, and generic approach to construct processable SCO materials. Here, we have studied a series of magnetic frameworks based on partial ligand substitution by using different chemical mixtures of two organic ligands, yielding four isostructural coordination polymers.
View Article and Find Full Text PDFCO capture and storage have been regarded as promising concepts to reduce anthropogenic CO emissions. However, the high cost, inferior adsorption capacity, and higher effective activation temperature of traditional sorbents limit their practical application in efficient CO capture. Here, a C-S-H@ZIF-8 (C-S-Z) sorbent is fabricated by in situ growth of the ZIF-8 shell on the C-S-H (calcium-silicate-hydrate) surface for ultra-high CO adsorption and storage.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
The manipulation of spin-state switching (SSS) under ambient conditions is of significant importance for the construction of molecular switches. Herein, we demonstrate that reversible SSS can be mediated by the aggregation state of a near-infrared (NIR)-sensitive ferrous complex. The ferrous complex was J-aggregated in a DMF suspension and with a low-spin (LS) state; however, with the addition of water, it changed to H-aggregation and reached a high-spin (HS) state, owing to the enhanced intramolecular charge transfer and metal-to-ligand charge transfer.
View Article and Find Full Text PDFBy using in-site generated formate, 2D HOFs of TCPP, with excellent stability and permanent porosity (BET surface area larger than 560 m2 g-1), have been obtained. The constructed 2D square-like TCPP-HCO2 grid sheets have shown considerable in-plane stability that comparable to the TCPP-based 2D MOFs, that can be exfoliated into atomically thin 2D nanosheets with efficient photocatalytic activity in aqueous system. These results are expected to shed light on the application-orientated one-pot synthesis for new kinds of multi-dimensional HOFs.
View Article and Find Full Text PDFThe coordination interactions between transition-metal ions (Cu, Ag) and sulfur atoms on ultrathin two-dimensional (2D) nanosheets of spin-crossover (SCO) metal-organic frameworks {[Fe(1,3-bpp)(NCS)]} (1,3-bpp = 1,3-di(4-pyridyl)propane), which constructed the ultrathin 2D nanosheets into three-dimensional (3D) nanoparticles, have made a profound effect on the SCO performance. Compared with 2D nanosheets, both the intraligand π-π* transition band and the metal-to-ligand charge transition band from the d(Fe) + π(NCS) to π*(1,3-bpp), for the 3D nanoparticles, have shown dramatic blue-shifts; meanwhile, the d-d transition band for the high-spin (HS) state Fe(II) ions has been generated, suggesting significantly the influence of 3D assemble-caused dimensional changes on the solid-state SCO performance of ultrathin 2D nanosheets. More importantly, by loading on the ytterbium ion (Yb)-sensitized hexagonal phase upconverting nanoparticles in the aqueous colloidal suspension, the near infrared (NIR) light (980 nm) triggered HS (high spin) to LS (low spin) state transitions have been observed, demonstrating the achievement of challenging target of NIR light-triggered molecular conversion under environment conditions.
View Article and Find Full Text PDFPrecise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO -H O-OH(TIMDP)-N(TIMDP) hydrogen-bonding bridge.
View Article and Find Full Text PDFThe design and preparation of a porous high-valence metal-organic framework (MOF) featuring open coordination sites are of utmost importance for the development of adsorbent materials. Here in this work, the three-dimensional (3D) high-valence MOF [Er(dcbp)(DMF)(HO)]·2HO (HV-MOF-1; Hdcbp = 4,4'-dicarboxy-2,2'-bipyridine, DMF = N,N-dimethylformamide), which possesses permanent porosity and two open coordination sites, has been prepared and characterized. In the 3D framework, the dcbp molecules display two different bridging styles, resulting in ordered diamondlike pores with bared carboxyl oxygen and pyridine nitrogen atoms on dcbp exposed directly to the pores, generating hydrophilic characteristics and high water affinity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Subtle integration of rotatable polar components into dielectric crystals can contribute significantly to adjustable switching temperatures ( T) and dielectric relaxation behaviors. Currently, one of the biggest challenges lies in the design of optimal polar components with moderate motion resistance in a crystalline system. In this work, we demonstrate that under refrigerator conditions, rotatable hydrogen-bonded one-dimensional (1D) cationic chains, {[CHN]} (CHN = 3,5-diamino-1,2,4-triazolinium), and two-dimensional (2D) anionic layers, {[(HO)·SO]} , can be generated in an organic salt, 3 ([CHN]·[(HO)·SO]).
View Article and Find Full Text PDFJ Phys Chem Lett
December 2018
Combining the fascinating advantages of ultrathin two-dimensional (2D) nanosheets with the nanostructuration of spin-crossover (SCO) materials represents an attractive target of controlled fabrication of SCO nano-objects at the device level. Here, we demonstrate that through facile-operating ultrasonic force-assisted liquid exfoliation technology the three-dimensional (3D) van der Waals SCO bulk precursor {[Fe(1,3-bpp)(NCS)] (1, 1,3-bpp = 1,3-di(4-pyridyl)-propane)} can be exfoliated into single-layered 2D nanosheets (NS-1). As a consequence, the magnetism has been tuned from complete paramagnetic (bulk precursors) to SCO transition at around 250 K (2D nanosheets).
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Through a facile-operating ultrasonic force-assisted liquid exfoliation technology, the single-layered two-dimensional (2D) [Co(CNS)(pyz)] (pyz = pyrazine) nanosheets, with a thickness of sub-1.0 nm, have been prepared from the bulk precursors. The atomically thickness and the presence of abundant sulfur atoms with high electronegativity arrayed on the double surfaces of the sheets are making this kind of 2D MOF (metal-organic framework) nanosheets highly sensitive to intermolecular interactions.
View Article and Find Full Text PDFBidirectional photoswitching of molecular materials under ambient condition is of significant importance. Herein, we present for the first time that a core-shell UCNP-SCO nanosphere (UCNP = upconversion nanophosphor, SCO = spin crossover), which was composed of a UCNP core (NaYF: 20 mol % Yb, 1 mol % Er) and an SCO iron(II) shell ([Fe(HBpz)(bipy-COOH)], HBpz = dihydrobis(1-pyrazolyl)borate, bipy-COOH = 4,4'-dicarboxy-2,2'-bipyridine), can be reversibly photoswitched between the high-spin and low-spin states at room temperature in the solid state, via alternating irradiation with near-infrared (λ = 980 nm) and ultraviolet (λ = 310 nm) light. What's more, this reversible spin-state switching was accompanied by a variation of fluorescent spectrum and dielectric constants.
View Article and Find Full Text PDFA thermal-induced dielectric switching has been realized in two ion-pair crystal [CHN]·[HPO] (1, CHN = 3,5-diamino-1,2,4-triazolinium) through single-crystal-to-single-crystal phase transition (SCSC-PT). Upon cooling from room temperature, the 1D cation stripes that are composed of [CHN] cations have undergone a 90° sharp rotation around the c axis, accompanied by the transition of crystal stacking from loose unparallel (dynamic state) to compression parallel (static state) and reorientation of dipoles on the [CHN] cation, which thus resulted in high dielectric state to low dielectric state transformation. While on the warming run, the reverse process was rather sluggish, resulting in a reversible dielectric switching with ultralarge (about 40K wide) hysteresis loop near room temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2018
The organometallic cation 1 (Fe(bipy-NH), bipy-NH = 4,4'-diamino-2,2'-bipyridine), which was constructed in situ in solution, can bind CO from air effectively with a stoichiometric ratio of 1:4 (1/CO), through the formation of "H-bonded CO" species: [CO-OH-CO] and [CO-CO-OH]. These two species, along with the captured individual CO molecules, connected 1 into a novel 3D (three-dimensional) architecture, that was crystal 1·2(OH)·4(CO). The adsorption isotherms, recycling investigations, and the heat capacity of 1 have been investigated; the results revealed that the organometallic cation 1 can be recycled at least 10 times for the real-world CO capture applications.
View Article and Find Full Text PDFSynergistic therapy has caused increasing interest in recent treatment of cancer owing to its preferable therapeutic efficiency to most single antineoplastic protocol. Herein, we design a co-delivery two drugs nanosystem based on biodegradable liposomes, loading cisplatin, Indocyanine green (ICG), and CJM126 coupled with cholesterol derivative (CJM-Chol) for the purpose of synergistic therapy. The obtained nanoparticles showed a uniform diameter of 103.
View Article and Find Full Text PDFThe near-infrared (NIR)-mediated novel strategy to control the drug release from nanocarriers has developed rapidly in recent decades. Polyaniline as a non-cytotoxic and electroactive material for studying cellular proliferation has attracted great attention in recent years. In the present work, polyaniline-mediated polymeric nanoparticles were developed to target the delivery of cisplatin and release it in a controllable way.
View Article and Find Full Text PDFBiodegradable polymeric nanoparticles have received growing interest as one of the most promising agents for drug delivery. In the present work, functional and core-crosslinked poly(ethylene glycol) with poly(ϵ-caprolactone) (PEG -PCL ) block copolymer and lecithin as biodegradable polymer doped with polyaniline was used to assemble nanoparticles which were prepared for targeted delivery and controlled release of cisplatin. The morphology of the polyaniline nanoparticles was determined by dynamic light scattering and the prepared nanoparticles showed a size of 83(±1) nm and a uniform spherical shape.
View Article and Find Full Text PDFMagnetism of a complex [Fe(H2Bpz2)2(bipy-NH2)] (H2Bpz2 = dihydrobis(1-pyrazolyl)borate, bipy-NH2 = 4,4'-diamino-2,2'-bipyridine) has been altered from paramagnetic to spin-crossover (SCO) behavior, through protonation of one amino group of bipy-NH2 with CF3SO3H. Complete SCO transition, both in solid state and in solution, occurs at ambient temperature.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
Four new complexes, [Co(dmbpy)2(dca)2]·CH3OH (1), [Ni(dmbpy)2(dca)2]·CH3OH (2), [Zn(dmbpy)2(dca)2]·(3) and [Cu(dmbpy)2(OH)2]·5H2O (4) (dca=dicyanamide), derived from 4,4'-dimethyl-2,2'-bipyridine (dmbpy) have been synthesized and characterized by elemental analysis, TGA and single-crystal X-ray diffraction. Crystal structures and Hirshfeld surfaces analysis revealed that the complexes 1-3 were mainly supported by OH⋯N, CH⋯N and π⋯π intermolecular interactions, and for complex 4, the uncoordinated water molecules play a key role in the construction of the 3D stacking motif. UV spectrum measurements demonstrate that all of the complexes show typical metal to ligand charge transfer (MLCT) absorption bands between 301 and 306nm.
View Article and Find Full Text PDFA new iron(II) complex based on the 4,4'-dimethyl-2,2'-bipyridine ligand [Fe(4,4'-dmbpy)3(ClO4)(SCN)·3H2O (1·3H2O)] has been prepared and characterized. Structural studies and Hirshfeld surface analysis for complex 1·3H2O at three different temperatures (300, 240 and 130 K) are described. The UV-vis absorption spectrum of a water-free sample (1) in methanol solution and magnetic susceptibility measurements for solid-state samples 1·3H2O and 1 revealed that the removal of lattice water molecules from complex 1·3H2O changed the magnetic properties from the low-spin state (1·3H2O) to the complete spin-crossover (1) between 350-220 K with a thermal hysteresis of 7 K, and was accompanied by a colour change from brown to red.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
May 2014
Two copper complexes 1 [Cu2(phen)2(salicylaldehyde)2(ClO4)2] and 2 [Cu2 (2,2'-dipyridyl)2(salicylaldehyde)2(ClO4)2] have been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. These two complexes were display binuclear structure with Cu(II) ions in distorted octahedral environment but antipodal orientation of the binuclear units between them. Molecular Hirshfeld surfaces revealed that the crystal structures of 1 and 2 were supported mainly by H-H, C-H⋯π, π⋯π (C-C), and C-H⋯O intermolecular interactions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2014
A new complex ([Cu(L1)2(H2O]2]⋅2H2O, 1) derived from a hetero N- and O-donor ligand 5-methyl-imidazole-3-carboxylic acid (L1H) has been synthesized and characterized. Comparisons between [Cu(L1)2(H2O]2]⋅2H2O, [Co(L2)(H2O]2⋅H2O (2), and [Cu(L2)2H2O]⋅H2O (L2H=5-methyl-isoxazole-3-carboxylic acid) revealed that the coordinated water molecules play a key role in the construction of crystal structures: two coordinated water molecules in the axial positions lead to single-deck 1D chain and 3D motif while one coordinated water molecule resulted to double-deck 1D chain and 2D stacking motif. Molecular Hirshfeld surfaces revealed that complexes 1 and 2 were supported mainly by H-H, C-H⋯π, and O-H⋯O intermolecular interactions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2014
Two new metastable crystalline forms of 6-chloroquinolin-2(1H)-one (forms II and III), which were induced by two kinds of 3D inorganic anions (ClO4- and BF4-), have been prepared and characterized in this work. We performed single-crystal diffraction, X-ray powder diffraction (XRPD), Hirshfeld surfaces, solid-state vibrational spectroscopy (IR) and thermal analysis (DSC, TGA) to these two new forms as well as the original one (form I). Form I featured with 1D chain, while form II and III featured with dimeric unit with stronger π⋯π and hydrogen bonds interactions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2014
Three new co-crystals: pyridine-2-carboxamide-succinic acid (1), pyridine-2-carboxamide-glutaric acid (2) and pyridine-2-carboxamide-adipic acid (3) have been synthesized and characterized by single-crystal X-ray diffraction, TGA/DSC measurements, solid-state vibrational spectroscopy (IR and Raman) in this work. The investigation revealed that the carbon chain length of these alkyl acids changed the connecting motif of co-crystals 1-3 from trimer to 1D chain, and the formation of hydrogen bond interaction of pyridine-2-carboxamide with these alkyl acids lead to red shift of stretching vibration of NH2 and OH groups in IR and Raman spectra. We also studied Hirshfeld surface and UV properties of co-crystals 1-3, and we found that the carbon chain length lead to decrease of close intermolecular interactions, and the formation of hydrogen bond interaction lead to red shift of UV spectra.
View Article and Find Full Text PDF