The separation of chiral drugs continues to pose a significant challenge. However, in recent years, the emergence of membrane-based chiral separation has shown promising effectiveness due to its environmentally friendly, energy-efficient, and cost-effective characteristics. In this study, we prepared chiral composite membrane via interfacial polymerization (IP), utilizing β-cyclodextrin (β-CD) and piperazine (PIP) as mixed monomers in the aqueous phase.
View Article and Find Full Text PDFHydroxychloroquine (HCQ), 2-([4-([7-Chloro-4-quinolyl]amino)pentyl]ethylamino)ethanol, exhibited significant biological activity, while its side effects cannot be overlooked. The RP-HPLC enantio-separation was investigated for cost-effective and convenient optical purity analysis of HCQ. The thermodynamic resolution of Rac-HCQ, driven by enthalpy and entropy, was achieved on the C18 column using Carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral mobile phase agent (CMPA).
View Article and Find Full Text PDFIn the present study, flat cellulose acetate ultrafiltration membranes were prepared first by nonsolvent induced phase separation method. Then chiral membranes for separating the enantiomers were prepared by grafting the ultrafiltration membranes using ethylenediamine-β-cyclodextrin as the chiral selector and epichlorohydrin as the spacer arm. The pure water permeability of the ultrafiltration membrane was around 115 L·m·h·bar.
View Article and Find Full Text PDFTo investigate the thermodynamic and molecular self-assembly mechanism of trans-1,2-cyclohexane dicarboxylic acid containing two carboxylic acid groups in the chiral resolution process, (S)-phenylethylamine was used as the chiral resolving agent. Two stoichiometric salts were formed when the raw materials were fed at different molar ratios: cyclohexane dicarboxylate monophenylethylamine salt and cyclohexane dicarboxylate diphenylethylamine salt. When the molar ratio of the (S)-phenylethylamine to trans-1,2-cyclohexane dicarboxylic acid was less than 3:1, trans-(1S,2S)-cyclohexane dicarboxylic acid was obtained with 97 e.
View Article and Find Full Text PDFA rapid and efficient method was developed for enantioseparation of basic drugs, using carboxymethyl-β-cyclodextrin (CM-β-CD) as chiral mobile phase additive, rather than involving costly chiral column in high-performance liquid chromatography (HPLC) system. Four of the six basic drug enantiomers investigated were successfully separated. The highest resolution reaches 2.
View Article and Find Full Text PDFThe resolution of halogenated mandelic acids using levetiracetam (LEV) as a resolving agent via forming enantiospecific co-crystal was presented. Five halogenated mandelic acids, 2-chloromandelic acid (2-ClMA), 3-chloromandelic acid (3-ClMA), 4-chloromandelic acid (4-ClMA), 4-bromomandelic acid (4-BrMA), and 4-fluoromandelic acid (4-FMA), were selected as racemic compounds. The effects of the equilibrium time, molar ratio of the resolving agent to racemate, amount of solvent, and crystallization temperature on resolution performance were investigated.
View Article and Find Full Text PDFAn optical resolution of 3-chloromandelic acid (3-ClMA) using threo-(1S,2S)-2-amino-l-p-nitrophenyl-1,3-propanediol ([S,S]-SA) as a resolving agent was presented. The effects of the type of solvents, the amount of solvent, molar ratio of the resolving agent to racemate and filtration temperature on resolution were investigated. Under the optimal resolution conditions, the content of less soluble salt reached 98%, and the resolution efficiency was as high as 94%.
View Article and Find Full Text PDFIn order to avoid the disadvantage of commonly used resolving agent 1-phenylethylamine (hereafter: PEA), which is soluble in water, ()-(+)-benzyl-1-phenylethylamine (()-(+)-BPA) was used to resolve 4-chloromandelic acid (4-ClMA) in this study. The optimal resolution conditions were determined: absolute ethanol as a solvent, the molar ratio of 4-ClMA to ()-(+)-BPA as 1:1, the filtration temperature as 15 °C, and the amount of solvent as 1.6 mL/1 mmol 4-ClMA.
View Article and Find Full Text PDFA liquid-liquid extraction resolution of 4-chloro-mandelic acid (4-ClMA) was studied by using 2-chloro-N-carbobenzyloxy-L-amino acid (2-Cl-Z-AA) as a chiral extractant. Important factors affecting the extraction efficiency were investigated, including the type of chiral extractant, pH value of aqueous phase, initial concentration of chiral extractant in organic phase, initial concentration of 4-ClMA in aqueous phase, and resolution temperature. It was observed that the concentration of (R)-4-ClMA was much higher than that of (S)-4-ClMA in organic phase due to a higher stability of the complex formed between (R)-4-ClMA and 2-Cl-Z-AA.
View Article and Find Full Text PDFEnantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
December 2014
The absolute configuration of the title mol-ecular salt, C15H18N(+)·C8H6ClO3 (-), has been confirmed by resonant scattering. In the (R)-N-benzyl-1-phenyl-ethyl-ammonium cation, the phenyl rings are inclined to one another by 44.65 (7)°.
View Article and Find Full Text PDFEnantioselective liquid-liquid extraction of zopiclone was conducted by employing a series of (R)-mandelic acid esters as chiral extractants. The effects of concentration of extractant, concentration of zopiclone, type of organic solvent, pH value, and temperature on the extraction efficiency were investigated. (R)-o-chloromandelic acid propyl ester was demonstrated to be an efficient chiral extractant for zopiclone resolution with a maximum enantioselectivity of 1.
View Article and Find Full Text PDFDuring the resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine, the crystals of the less soluble salt were grown, and their structure were determined and presented. The chiral discrimination mechanism was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing mode in crystal structure of the less soluble diastereomeric salt. A one-dimensional double-chain hydrogen-bonding network and a "lock-and-key" supramolecular packing mode are disclosed.
View Article and Find Full Text PDFThe optical resolution of p-chloromandelic acid using (R)-alpha-phenylethylamine as resolving agent was presented. The effect of solvents, molar ratio of racemate to the resolving agent, filtration temperature as well as the amount of solvent on resolution was investigated by orthogonal experimentation. The binary melting point phase diagram and crystal structure analysis of diastereomeric salts rationalized the success of the resolution.
View Article and Find Full Text PDF