Zinc oxide has been of interest because of its efficient redox capacity in the UV spectral region. However, the high bandwidth limits its application in the visible region. Although synthesizing heterojunctions and doping with other elements have become the focus of the problem, it inevitably has an impact on the environment.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
August 2020
Nitrogen-enriched reduced graphene oxide electrode material can be successfully prepared through a simple hydrothermal method. The morphology and microstructure of ready to use electrode material is measured by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Physical characterizations revealed that nitrogen-enriched reduced graphene oxide electrode material possessed high specific surface area of 429.
View Article and Find Full Text PDF