Wearing masks has been a recommended protective measure due to the risks of coronavirus disease 2019 (COVID-19) even in its coming endemic phase. Therefore, deploying a "smart mask" to monitor human physiological signals is highly beneficial for personal and public health. This work presents a smart mask integrating an ultrathin nanocomposite sponge structure-based soundwave sensor (≈400 µm), which allows the high sensitivity in a wide-bandwidth dynamic pressure range, i.
View Article and Find Full Text PDFStudy Design: Clinical case series.
Objective: The aim of this study was to explore the efficacy and safety of one-stage debridement, autogenous bone graft, and instrumentation for lumbar brucella spondylitis (LBS) via a posterior approach.
Summary Of Background Data: Reports on LBS are sporadic, and the therapeutic effect and safety of surgical interventions have not been assessed in clinical studies.
The typical difficulties associated with the detection of acidic peptides (i.e., those with low isoelectric points (pI)) by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) represent a challenge in some proteomic analyses.
View Article and Find Full Text PDFTransporting protons is essential in several biological processes as well as in renewable energy devices, such as fuel cells. Although biological systems exhibit precise supramolecular organization of chemical functionalities on the nanoscale to effect highly efficient proton conduction, to achieve similar organization in artificial systems remains a daunting challenge. Here, we are concerned with transporting protons on a micron scale under anhydrous conditions, that is proton transfer unassisted by any solvent, especially water.
View Article and Find Full Text PDFExtraction of peptides by reverse micelle-forming amphiphilic homopolymers and subsequent matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection of these peptides in the presence of these polymers can significantly enhance peptide ion signals. Here, the mechanism of this MALDI signal enhancement is investigated. We find that the signal enhancement is caused by coalescence of polymer-peptide conjugates into "hotspots" on the MALDI target.
View Article and Find Full Text PDFAmphiphilic homopolymer films have been immobilized onto substrates to study the interactions of these polymers with proteins. X-ray photoelectron spectroscopy (XPS) was utilized to measure the amount of protein adsorption. Amphiphilic homopolymers have been shown to reduce protein adsorption, despite the high affinity of the hydrophobic or hydrophilic functional groups by themselves toward proteins.
View Article and Find Full Text PDFFacially amphiphilic dendrimers have been shown to provide significant difference in surface behavior due to subtle changes in structure. The monodendrons are capable of providing hydrophobic surfaces, while the didendrons provide superhydrophobic surfaces. This provides an example of how a molecular level change could result in significant changes in surface behavior.
View Article and Find Full Text PDF