Background And Aims: Liver HCC is the second leading cause of cancer-related deaths worldwide. The heterogeneity of this malignancy is driven by a wide range of genetic alterations, leading to a lack of effective therapeutic options. In this study, we conducted a systematic multi-omics characterization of HCC to uncover its metabolic reprogramming signature.
View Article and Find Full Text PDFCyclooxygenase-2 (COX-2) is a critical enzyme associated with inflammation and tumorigenesis. Although several studies have compared the expression of COX-2 in endometrial cancer tissues and normal tissues, the results have been inconsistent thus far. This study aims to conduct a meta-analysis to elucidate the role of COX-2 in the determination of the risk, prognosis, and clinical features of endometrial cancer.
View Article and Find Full Text PDFNeuromyelitis optica spectrum disorders (NMOSDs) are blindness-causing neuritis. In NMOSD patients, NMO-IgG evokes astrocytopathy that in turn causes demyelination. While measurement of NMO-IgG titer will help neurologists make the diagnosis of NMOSDs, it is not sufficient to evaluate the severity of astrocytopathy.
View Article and Find Full Text PDFMethylmercury (MeHg) is a ubiquitous environmental toxin that causes neurologic and developmental diseases. Oxidative damage and excitotoxicity are putative mechanisms, which underlie MeHg-induced neurotoxicity. In this study, the cross-talk between the oxidative damage and excitotoxicity pathways and the protective effects of riluzole in the rat cortex were explored.
View Article and Find Full Text PDFMethylmercury (MeHg) is one of the ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. The identification of the underlying mechanisms has been a main focus of research in the neurotoxicology field. Glutamate (Glu) dyshomeostasis and oxidative stress have been identified as two critical mechanisms mediating MeHg-induced neurotoxicity.
View Article and Find Full Text PDFOverexposure to manganese (Mn) has been known to induce neuronal damage. However, little is known of the role that reactive oxygen species (ROS) play in protein aggregation resulting from Mn exposure. The current study investigated whether oxidative stress is involved in manganese-induced alpha-synuclein oligomerization in organotypic brain slices.
View Article and Find Full Text PDFOverexposure to methylmercury (MeHg) has been known to induce neurotoxicity. The objective of this study is to explore mechanisms that contribute to MeHg-induced nerve cell apoptosis focusing on the alteration of intracellular Ca(2+) homeostasis and expression of N-methyl-D-aspartate receptors (NMDARs) subunits in rat cerebral cortex and whether MK801, a non-competitive NMDAR antagonist, could attenuate MeHg-induced neurotoxicity. Fifty rats were randomly divided into five groups of 10 animals in each group: control group, MK801 control group, MeHg-treated group (4 and 12 μmol/kg) and MK801 pre-treated group.
View Article and Find Full Text PDFObjective: This study was to evaluate the effect of riluzole on methylmercury- (MeHg-) induced oxidative stress, through promotion of glutathione (GSH) synthesis by activating of glutamate transporters (GluTs) in rat cerebral cortex.
Methods: Eighty rats were randomly assigned to four groups, control group, riluzole alone group, MeHg alone group, and riluzole + MeHg group. The neurotoxicity of MeHg was observed by measuring mercury (Hg) absorption, pathological changes, and cell apoptosis of cortex.
Methylmercury (MeHg) is one of the ubiquitous environmental toxicants, which can induce oxidative stress and an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. However, little is known of the interaction between oxidative stress and Glu metabolism play in MeHg poisoning rats. We have investigated the neuroprotective role of MK-801, a non-competitive N-methyl-d-aspartate receptors (NMDAR) antagonist, against MeHg-induced neurotoxicity.
View Article and Find Full Text PDFMethylmercury (MeHg) is a highly neurotoxic environmental pollutant that has a high appetency to the central nervous system. The underlying mechanisms of MeHg-induced neurotoxicity have not been elucidated clearly until now. Therefore, to explore the mechanisms contribute to MeHg-induced neurotoxicity, rats were exposed to different dosage of methylmercury chloride (CH3 ClHg) (0, 4, and 12 μmol kg(-1)) for 4 weeks to evaluate the neurotoxic effects of MeHg.
View Article and Find Full Text PDFAs a highly toxic environmental pollutant, methylmercury (MeHg) can cause neurotoxicity in animals and humans. Considering the antioxidant property of grape seed proanthocyanidin extracts (GSPE), this study was aimed to evaluate the effect of GSPE on MeHg-induced neurotoxicity in rats. Rats were exposed to MeHg by intraperitoneal injection (4, 12 μmol/kg, respectively) and GSPE was administered by gavage (250 mg/kg) 2 h later.
View Article and Find Full Text PDFTo evaluate the protective potential of lycopene (Lyc) and proanthocyanidins (PCs) against mercuric chloride (HgCl(2))-induced hepatotoxicity, the study focused on the mechanism of oxidative stress. Firstly, the rats were subcutaneously (s.c.
View Article and Find Full Text PDFBiol Trace Elem Res
December 2011
Mercury (Hg) is an occupational and environmental contaminant that is a well-recognized health hazard. To approach the concrete mechanisms of mercury nephrotoxicity and find out a new way to prevent it, the rats were subcutaneously injected with different dosages of mercuric chloride (HgCl(2))--0, 2.2, 4.
View Article and Find Full Text PDF