Perovskite nanocrystals (NCs) with their excellent optical and semiconductor properties have emerged as primary candidates for optoelectronic applications. While extensive research has been conducted on the 3D perovskite phase, the zero-dimensional (0D) form of this promising material in the NC format remains elusive. In this paper, a new synthesis strategy is proposed.
View Article and Find Full Text PDFWe characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries stand out as highly promising energy storage systems because of their superior theoretical capacity and the affordability of sulfur as an active material. However, their inherent drawbacks have hindered the commercialization of Li-S batteries. Of these, the polysulfide shuttle effect is one of the most critical issues, leading to the rapid decline in battery capacity.
View Article and Find Full Text PDFIn recent years, regenerative thermal oxidizer (RTO) has been widely used in the petroleum industry, chemical industry, etc. The massive storage required by solid waste has become a serious problem. Due to their chemical composition, bauxite tailings as raw materials for high-temperature thermal storage ceramics show enormous potential in the fields of research and application.
View Article and Find Full Text PDFThe study of the origin, evolution, and diversification of the wall-associated kinase gene family in plants facilitates their functional investigations in the future. Wall-associated kinases (WAKs) make up one subfamily of receptor-like kinases (RLKs), and function directly in plant cell elongation and responses to biotic and abiotic stresses. The biological functions of WAKs have been extensively characterized in angiosperms; however, the origin and evolutionary history of the WAK family in green plants remain unclear.
View Article and Find Full Text PDFVerticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance.
View Article and Find Full Text PDFProtein ubiquitination is essential for plant growth and responses to the environment. The SEVEN IN ABSENTIA (SINA) ubiquitin ligases have been extensively studied in plants, but information on their roles in fiber development is limited. Here, we identified GhSINA1 in Upland cotton (Gossypium hirsutum), which has a conserved RING finger domain and SINA domain.
View Article and Find Full Text PDFSalinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses.
View Article and Find Full Text PDFAlthough the burden of malaria has been successfully controlled globally, this disease remains a major public health issue. To date, neither existing drugs nor vaccines against malaria are sufficient in eliminating malaria worldwide. To achieve the eradication of malaria by 2040, effective interventions targeting all species are urgently needed.
View Article and Find Full Text PDFPemphigus vulgaris (PV) is a chronic, mucocutaneous, autoimmune bullous disease. Double filtration plasmapheresis (DFPP) may be effective when PV fails to be controlled by conventional corticosteroid treatment. The patient was a 64-year-old man with erythema, blisters, and erosions on his head, face, mouth, trunk, limbs, and scrotum for over a month.
View Article and Find Full Text PDFA high temperature solid state method was used to prepare NaGd(PO):Eu,Mn phosphors with good thermal stability. The phosphor shows a broadband excitation region of 250-430 nm, which can be matched with the emissions of ultraviolet (UV)/near-ultraviolet (NUV) LED chips for white light emitting diodes (w-LEDs). The energy transfer efficiency is 74.
View Article and Find Full Text PDFThe high price of noble metal resources limits its commercial application and stimulates the potential for developing new catalysts that can replace noble metal catalysts. Tungsten-based catalysts have become the most important substitutes for noble metal catalysts because of their rich resources, friendly environment, rich valence and better adsorption enthalpy. However, some challenges still hinder the development of tungsten-based catalysts, such as limited catalytic activity, instability, difficult recovery, and so on.
View Article and Find Full Text PDFFeO is a promising alternative for next-generation lithium-ion batteries (LIBs). However, its poor cycle stability due to the large volume effect during cycling and poor conductivity hinders its application. Herein, we have successfully designed and prepared a carbon-coated ternary transition-metal-oxide composite (noted as (FeCoNi)O@C), which is derived from FeCoNi-MOF-74 (denoted as FeCoNi-211-24).
View Article and Find Full Text PDFNovel and stringent automotive exhaust gas emissions standards are urgently needed to counter the problems posed by the worsening global climate and environment. However, the traditional cordierite-based honeycomb ceramics substrates with ultimate pore density have seriously restricted the establishment of new emission standards. Herein, we introduce a novel robust substrate with tailored volume-specific surface area and low heat capacity.
View Article and Find Full Text PDFThe modifications of local structure in solid solution are a crucial step to regulate the photoluminescence properties of rare-earth ion-based phosphors. However, the structural diversity of host matrices and the uncertain occupation of activators make it challenging to obtain phosphors with both high stability and tailored emission. Herein, We synthesized a series of β-Ca(PO)-type CaZnGaLa(PO):Eu solid solution phosphors by design.
View Article and Find Full Text PDFSilicoaluminophosphate zeolite (SAPO-34) has been attracting increasing attention due to its excellent form selection and controllability in the chemical industry, as well as being one of the best industrial catalysts for methanol-to-olefin (MTO) reaction conversion. However, as a microporous molecular sieve, SAPO-34 easily generates carbon deposition and rapidly becomes inactivated. Therefore, it is necessary to reduce the crystal size of the zeolite or to introduce secondary macropores into the zeolite crystal to form a hierarchical structure in order to improve the catalytic effect.
View Article and Find Full Text PDFIn plants, glucose (Glc) plays important roles, as a nutrient and signal molecule, in the regulation of growth and development. However, the function of Glc in fiber development of upland cotton (Gossypium hirsutum) is unclear. Here, using gas chromatography-mass spectrometry (GC-MS), we found that the Glc content in fibers was higher than that in ovules during the fiber elongation stage.
View Article and Find Full Text PDFThe wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) form a group of receptor-like kinases (RLKs) with extracellular domains tightly linked to the cell wall. The WAKs/WAKLs have been known to be involved in plant growth, development, and stress responses. However, the functions of WAKs/WAKLs are less well known in cotton.
View Article and Find Full Text PDFDeveloping a porous separation membrane that can efficiently separate oil-water emulsions still represents a challenge. In this study, nanofiber membranes with polydopamine clusters polymerized and embedded on the surface were successfully constructed using a solution blow-spinning process. The hierarchical surface structure enhanced the selective wettability, superhydrophilicity in air (≈0°), and underwater oleophobicity (≈160.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2021
In this work, we report a color-tunable green-orange-emitting phosphor by introducing Bi and Eu into BaLuO host lattice. The emission spectra of BaLuO:Bi,Eu cover the whole visible spectral region, and present both the typical emissions from P - S transitions of Bi and D - F transitions of Eu. The energy transfer behavior in the phosphor has been verified, based on which the emitting color of BaLuO:0.
View Article and Find Full Text PDFMetal selenide has attracted much attention for use in rechargeable batteries due to its excellent conductivity and considerable capacity. However, it is still necessary to achieve a long cycle life and excellent Na+ storage performance to enable its practical application. Volume expansion and poor stability of selenide during operation also hinder its industrial applications.
View Article and Find Full Text PDFHistone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure by changing the methylation state of the lysine residue site and plays an important role in plant growth and development.
View Article and Find Full Text PDFBackground: Fiber quality is an important economic trait of cotton, and its improvement is a major goal of cotton breeding. To better understand the genetic mechanisms responsible for fiber quality traits, we conducted a genome-wide association study to identify and mine fiber-quality-related quantitative trait loci (QTLs) and genes.
Results: In total, 42 single nucleotide polymorphisms (SNPs) and 31 QTLs were identified as being significantly associated with five fiber quality traits.
Gene flow patterns and the genetic structure of domesticated crops like cotton are not well understood. Furthermore, marker-assisted breeding of cotton has lagged far behind that of other major crops because the loci associated with cotton traits such as fiber yield and quality have scarcely been identified. In this study, we used 19 microsatellites to first determine the population genetic structure and patterns of gene flow of superior germplasm resources in upland cotton.
View Article and Find Full Text PDF