Publications by authors named "YangHao Wang"

Introduction: BIRC5 (Survivin) is a crucial anti-apoptotic protein overexpressed in various cancers, promoting tumor growth and treatment resistance. This study investigates its expression across 33 cancer types and explores its diagnostic, prognostic, and immune-related significance.

Methods: We analyzed RNA-seq data from TCGA and protein expression data from the Human Protein Atlas.

View Article and Find Full Text PDF

Osteoporosis is a metabolic bone disease that seriously jeopardizes the health of middle-aged and elderly people. Mesenchymal stem cell-based transplantation for osteoporosis is a promising new therapeutic strategy. Induced mesenchymal stem cells (iMSCs) are a new option for stem cell transplantation therapy.

View Article and Find Full Text PDF

Background: Osteoporosis is characterized by low systemic bone mineral content and destruction of bone microarchitecture. Promoting bone regeneration and reversing its loss by infusion of exogenous bone marrow mesenchymal stem cells (BMSCs) is a potentially effective treatment for osteoporosis. However, their limited migration to target organs reduces the therapeutic effect of the cells.

View Article and Find Full Text PDF

Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic scoliosis is a condition affecting children's physical and mental health, with a study conducted in Yunnan Province, China, to determine its prevalence and associated miRNA profiles.
  • The study screened 84,460 students from ages 7 to 19, finding an overall prevalence of 1.10%, with higher rates in females (1.32%) than in males (0.87%), peaking at age 13.
  • Genetic analysis revealed 56 upregulated and 153 downregulated exosome-derived miRNAs in patients with idiopathic scoliosis, which could help understand the condition better and potentially lead to new diagnostic methods.
View Article and Find Full Text PDF

Lung cancer, specifically the histological subtype lung adenocarcinoma (LUAD), has the highest global occurrence and fatality rate. Extensive research has indicated that RNA alterations encompassing m6A, m5C, and m1A contribute actively to tumorigenesis, drug resistance, and immunotherapy responses in LUAD. Nevertheless, the absence of a dependable predictive model based on m6A/m5C/m1A-associated genes hinders accurately predicting the prognosis of patients diagnosed with LUAD.

View Article and Find Full Text PDF

Conventional circuit elements are constrained by limitations in area and power efficiency at processing physical signals. Recently, researchers have delved into high-order dynamics and coupled oscillation dynamics utilizing Mott devices, revealing potent nonlinear computing capabilities. However, the intricate yet manageable population dynamics of multiple artificial sensory neurons with spatiotemporal coupling remain unexplored.

View Article and Find Full Text PDF

Wireless internet-of-things (WIoT) with data acquisition sensors are evolving rapidly and the demand for transmission efficiency is growing rapidly. Frequency converter that synthesizes signals at different frequencies and mixes them with sensor datastreams is a key component for efficient wireless transmission. However, existing frequency converters employ separate synthesize and mix circuits with complex digital and analog circuits using complementary metal-oxide semiconductor (CMOS) devices, naturally incurring excessive latency and energy consumption.

View Article and Find Full Text PDF

Aims: This study aims to explore the role of exosomes from cancer-associated fibroblasts (CAFs) induced by PDGF-BB in promoting the malignancy of oral squamous cell carcinoma (OSCC) and provide new insight into the mechanism of OSCC progression and its treatment.

Main Methods: Exosomes were extracted from human oral mucosa fibroblasts (hOMFs) and CAFs. Differentially expressed miRNAs of exosomes between hOMFs and CAFs were analysed using high-throughput sequencing and self-programmed R software.

View Article and Find Full Text PDF

Objective: Cancer stemness and M2 macrophages are intimately linked to the prognosis of lung adenocarcinoma (LUAD). For this reason, this investigation sought to identify the key genes relevant to cancer stemness and M2 macrophages, explore the relationship between these genes and clinical characteristics, and determine the potential mechanism.

Methods: LUAD transcriptomic data was analyzed from The Cancer Genome Atlas (TCGA) as well as the Gene Expression Omnibus databases.

View Article and Find Full Text PDF

A major obstacle to bone tissue repair is the difficulty in establishing a rapid blood supply areas of bone defects. Vascular endothelial growth factor (VEGF)-infused tissue-engineered scaffolds offer a possible therapeutic option for these types of injuries. Their role is to accelerate angiogenesis and improve bone healing.

View Article and Find Full Text PDF

Background: Cancer-associated fibroblasts (CAFs) have significant tumor regulatory functions, and CAFs-derived exosomes (CAFs-Exo) released from CAFs play an important role in the progression of oral squamous cell carcinoma (OSCC). However, a lack of comprehensive molecular biological analysis leaves the regulatory mechanisms of CAFs-Exo in OSCC unclear.

Methods: We used platelet derived growth factor-BB (PDGF-BB) to induce the transformation of human oral mucosa fibroblast (hOMF) into CAFs, and extracted exosomes from the supernatant of CAFs and hOMF.

View Article and Find Full Text PDF

Elevated blood glucose concentration due to food intake will trigger insulin secretion from the dorsal pancreas has been extensively studied. This increased intracellular insulin level can stimulate glucagon release from intra-islets. However, the interaction between glucagon and insulin under a fasting state is unknown.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cell transplantation (BMSCT) is a potential treatment for osteoporosis, capable of contributing to bone tissue repair. BMSCT has demonstrated osteoinductive effects and the ability to regulate microenvironmental metabolism; however, its role and mechanisms in bone loss due to reduced estrogen levels remain unclear. In this study, the effect of BMSCT on ovariectomy (OVX)-induced osteoporosis in mice was assessed, and liquid chromatography-mass spectrometry (LC-MS) metabolomic studies of bone tissue were conducted to identify potential metabolic molecular markers.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) can promote osteogenesis and are a promising therapy for postmenopausal osteoporosis. However, the relationship between improved intraosseous microcirculation and increased bone mass induced by MSCs in postmenopausal osteoporosis remains unclear. After the primary MSCs were characterized, they were transplanted into ovariectomized mice.

View Article and Find Full Text PDF

The Supplemental Nutrition Assistance Program (SNAP) is designed to improve household diet and food security-a pressing problem confronting low-income families in the United States. Previous studies on the issue often ignored the methodological issue of endogenous program participation. We revisit this important issue by estimating a simultaneous equation system with ordinal household food insecurity.

View Article and Find Full Text PDF

Optimization problems are ubiquitous in scientific research, engineering, and daily lives. However, solving a complex optimization problem often requires excessive computing resource and time and faces challenges in easily getting trapped into local optima. Here, we propose a memristive optimizer hardware based on a Hopfield network, which introduces transient chaos to simulated annealing in aid of jumping out of the local optima while ensuring convergence.

View Article and Find Full Text PDF

As a key building block of biological cortex, neurons are powerful information processing units and can achieve highly complex nonlinear computations even in individual cells. Hardware implementation of artificial neurons with similar capability is of great significance for the construction of intelligent, neuromorphic systems. Here, we demonstrate an artificial neuron based on NbO volatile memristor that not only realizes traditional all-or-nothing, threshold-driven spiking and spatiotemporal integration, but also enables dynamic logic including XOR function that is not linearly separable and multiplicative gain modulation among different dendritic inputs, therefore surpassing neuronal functions described by a simple point neuron model.

View Article and Find Full Text PDF