Angew Chem Int Ed Engl
September 2024
Multiple resonance (MR) boron-nitrogen doped polycyclic aromatic hydrocarbons (BN-PAHs) have shown compelling thermally activated delayed fluorescence (TADF), surpassing those of their hydrocarbon analogues. However, the structural variety of π-extended BN-PAHs remains narrow. In this study, we synthesized three double helical BN-doped nanographenes (BN-NGs), 2 a-2 c, and three heptagon-embedded BN-NGs, 1 a-1 c, by π-extension of the MR core.
View Article and Find Full Text PDFTo systematically evaluate the effects of quality nursing care on wound pain and anxiety in burn patients. Computerised searches of PubMed, Google Scholar, Cochrane Library, Embase, Wanfang, China Biomedical Literature Database and China National Knowledge Infrastructure databases randomised controlled trials (RCTs) on the application of quality nursing care to burn patients were carried out from database inception to October 2023. Literature was screened and evaluated by two researchers based on inclusion and exclusion criteria, and data were extracted from the final included literature.
View Article and Find Full Text PDFThe incorporation of pentagon-heptagon pairs into helical nanographenes lacks a facile synthetic route, and the impact of these pairs on chiroptical properties remains unclear. In this study, a method for the stepwise construction of pentagon-heptagon pairs in helical nanographenes by the dehydrogenation of [6]helicene units was developed. Three helical nanographenes containing pentagon-heptagon pairs were synthesized and characterized using this approach.
View Article and Find Full Text PDFThe conventional approach toward molecules with large two-photon absorption (TPA) involves donor-acceptor conjugation. Herein we show a new strategy involving the use of hexa-branched nanographenes. We synthesized two hexa-branched nanographenes, one with six benzoaceanthrylene arms fused to the coronene core and the other with six pyrenyl arms fused to the coronene core.
View Article and Find Full Text PDFThe synthesis of well-defined nanocarbon multilayers, beyond the bilayer structure, is still a challenging goal. Herein, two trilayer nanographenes were synthesized by covalently linking nanographene layers through helicene bridges. The structural characterization of the trilayer nanographenes revealed a compact trilayer-stacked architecture.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
The precision synthesis of helical bilayer nanographenes (NGs) with new topology is of substantial interest because of their exotic physicochemical properties. However, helical bilayer NGs bearing non-hexagonal rings remain synthetically challenging. Here we present the efficient synthesis of the first helical bilayer nonbenzenoid nanographene (HBNG1) from a tailor-made azulene-embedded precursor, which contains a novel [10]helicene backbone with two embedded heptagons.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
Nanographenes are inclined to assemble into stacked columnar structures that are stabilized by π-π interactions, whereas other supramolecular structures of nanographenes, such as prisms and cages, are rarely investigated. Herein, a diazananographene was synthesized, and then assembled with a coordination unit, thereby producing a triangular metallaprism. After adding C or C , the triangular metallaprism was transformed into a square tetramer, which encapsulated a pair of C or C molecules.
View Article and Find Full Text PDFAlthough water-soluble graphene quantum dots (GQDs) have shown various promising bio-applications due to their intriguing optical and chemical properties, the large heterogeneity in compositions, sizes, and shapes of these GQDs hampers the better understanding of their structure-properties correlation and further uses in terms of large-scale manufacturing practices and safety concerns. It is shown here that a water-soluble atomically-precise GQD (WAGQD-C ) is synthesized and exhibits a deep-red emission and excellent sonodynamic sensitization. By decorating sterically hindered water-soluble functional groups, WAGQD-C can be monodispersed in water without further aggregation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2021
Here, we report a facile method to synthesize a series of macrocycles with different conformations. The planar macrocycle dimer (1), twisted macrocycle trimer (2) and "figure-eight" tetramer (3) are clearly elucidated by X-ray single-crystal analysis, in which the electron-rich phenanthrene units offer the possibility of supramolecular assembly. As expected, in the solid state, 1 and 3 assemble into a columnar stack and an interlocking dimer, respectively, via π-π interactions between the phenanthrene units.
View Article and Find Full Text PDFQuintulene, a non-graphitic cycloarene with fivefold symmetry, has remained synthetically elusive due to its high molecular strain originating from its curved structure. Here we report the construction of extended quintulene, which was unambiguously characterized by mass and NMR spectroscopy. The extended quintulene represents a naturally curved nanocarbon based on its conical molecular geometry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2020
The radial conjugated π-system of cycloparaphenylenes (CPPs) makes them intriguing fluorophores and unique supramolecular hosts. However, the bright photoluminescence (PL) of CPPs was limited to the blue light and the supramolecular assembly behavior of large CPPs was rarely investigated. Here we present the synthesis of tetra-benzothiadiazole-based [12]cycloparaphenylene (TB[12]CPP), which exhibits a lime to orange PL with an excellent quantum yield up to 82 % in solution.
View Article and Find Full Text PDFThe electronic structure of bilayer graphene can be altered by creating defects in its carbon skeleton. However, the natural defects are generally heterogeneous. On the other hand, rational bottom-up synthesis offers the possibility of building well-defined molecular cutout of defect-containing bilayer graphene, which allows defect-induced modulation with atomic precision.
View Article and Find Full Text PDF