We previously suggested that ASXL1 (additional sex comb-like 1) functions as either a coactivator or corepressor for the retinoid receptors retinoic acid receptor (RAR) and retinoid X receptor in a cell type-specific manner. Here, we provide clues toward the mechanism underlying ASXL1-mediated repression. Transfection assays in HEK293 or H1299 cells indicated that ASXL1 alone possessing autonomous transcriptional repression activity significantly represses RAR- or retinoid X receptor-dependent transcriptional activation, and the N-terminal portion of ASXL1 is responsible for the repression.
View Article and Find Full Text PDFRapid diagnosis of bacterial infection is important for patient management and appropriate therapy during the early phase of bacteria-induced disease. Among the existing techniques for identifying microbial, CE-SSCP combined with 16S ribosomal RNA gene-specific PCR has the benefits of excellent sensitivity, resolution, and reproducibility. However, even though CE-SSCP can separate PCR products with high-resolution, multiplex detection and quantification are complicated by primer-dimer formation and non-specific amplification.
View Article and Find Full Text PDFRapid identification of bacterial pathogens is important for patient management and initiation of appropriate antibiotic therapy in the early stages of infection. Among the several techniques, capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis combined with small subunit rRNA gene-specific polymerase chain reaction (PCR) has come into the spotlight owing to its sensitivity, resolution, and reproducibility. Despite the advantages of the method, the design of PCR primers and optimization of multiplex PCR conditions remain to be studied so that as many pathogens as possible can be analyzed in a single run.
View Article and Find Full Text PDFAdditional sex comb-like 1 (ASXL1, 170 kDa), a mammalian homolog of Drosophila ASX, was identified as a protein that interacts with retinoic acid receptor (RAR) in the presence of retinoic acid (RA). Systematic binding assays showed that the C-terminal nuclear receptor box (LVMQLL) of ASXL1 and the activation function-2 activation domain (AF-2 AD) core of the RAR are critical for ligand-dependent interaction. The interaction was confirmed using in vitro glutathione S-transferase pulldown and in vivo immunoprecipitation (IP) assays.
View Article and Find Full Text PDF