Publications by authors named "Yang-Jun Wang"

Based on the ISAM module in the WRF-CMAQ model, this study analyzed the source contribution(both regional and sectoral) of O and its precursors(NO and VOCs) in Zibo in June 2021. Days with a maximum daily 8-h average(MDA8) O higher(lower) than 160 μg·m were defined as polluted(clean) days. Differences in the source contribution between clean days and polluted days were compared, and a typical pollution period was selected for further process analysis.

View Article and Find Full Text PDF

Soil NO emissions represent an important source of atmospheric nitric oxide (NO) and play an important role in atmospheric chemistry. Based on the latest BDSNP algorithm, this study estimated the soil NO emissions over the Yangtze River Delta region for the year 2018 and further analyzed the associated temporal and spatial variations and uncertainties. The results showed that the annual soil NO emissions in 2018 over the YRD region was 213.

View Article and Find Full Text PDF

Based on Landsat satellite remote sensing images, this study interprets land use changes in the Yangtze River Delta (YRD) region from 2000 to 2018. Combined with changes in nitrogen fertilizer application, the changes in ammonia emissions from farmland ecosystem due changes in land use and nitrogen fertilizer application were further investigated. The results show that along with the rapid urbanization process, the area of cultivated land in the YRD region has gradually decreased from 276269 km (49% of total land area) in 2000 to 244001 km (44%) in 2018.

View Article and Find Full Text PDF

Intermediate volatility organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOA) but are currently not included in the conventional emissions inventories. Biomass burning represents an important source of IVOCs that could contribute to SOA formation. This study estimated the IVOC emissions from biomass burning in the Yangtze River Delta (YRD) region from 2010 to 2018 based on the fire inventory from NCAR (FINN) and the IVOCs/primary organic aerosol (POA) ratio reported in literature.

View Article and Find Full Text PDF

In this study, we analyzed several pollution episodes that occurred in the autumn and winter of 2018-2019 using multiple methods including the hierarchical clustering analysis, backward trajectory, and potential source contribution analysis based on monitored air quality and meteorological data. Bengbu, being a representative city to the north of the Yangtze River Delta (YRD) region and located in a heavily polluted area during these two pollution processes, is the focus of this work. The results indicated that the northern part of the YRD region is affected because of unfavorable meteorological conditions such as weak ground pressure, high humidity, low temperature, low wind speeds, and regional transport.

View Article and Find Full Text PDF

Atmospheric ammonia plays an important role in the formation of secondary inorganic composition of PM, which has attracted a high level of attention from researchers both in China and abroad. Quantifying ammonia emissions is of great scientific significance regarding research on the formation of secondary aerosol, realizing better model performance, and control of ammonia emissions. Previous studies have shown that agricultural activities are the dominant source of atmospheric ammonia, of which livestock and poultry farming contribute the most.

View Article and Find Full Text PDF

Intermediate volatility organic compounds (IVOCs) have a significant contribution to the formation of secondary organic aerosols (SOA) in the atmosphere, but are not included in the current emission inventory. In this study, IVOC emissions from vehicles are estimated for the Yangtze River Delta region (YRD) for 2017 based on two methods:the emission factor method and the IVOCs/POA scaling factor method. Uncertainties in the estimated IVOCs emissions and the impact on their potential formation are discussed.

View Article and Find Full Text PDF

With the fast development of urbanization, industrialization and mobilization, the air pollutant emissions with photochemical reactivity become more obvious, causing a severe photochemical pollution with the characteristics of high ozone concentration. However, the ozone source identification is very complicated due to the high non linearity between ozone and its precursors. Thus, ways to reduce ozone is still not clear.

View Article and Find Full Text PDF

Organic carbon (OC) and elemental carbon (EC) in PM2.5 samples collected in urban (Xujiahui) and industrial (Baoshan) areas in Shanghai during 2007-2008 were analyzed with a DRI carbon analyzer using IMPROVE-TOR protocol. The results showed that the seasonal average concentrations of OC and EC were highest in the winter and lowest in the summer.

View Article and Find Full Text PDF

The stable carbon isotope compositions of 2-methyltetrols, biomarker compounds for secondary organic aerosols formed from isoprene in the atmosphere, have been determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this work, isoprene with various delta(13)C values was used to produce 2-methyltetrols via an oxidation reaction with hydrogen peroxide in sulfuric acid under direct sunlight. The target compounds with different stable carbon isotope compositions were then derivatized by methylboronic acid with a known delta(13)C value and measured by GC/C/IRMS.

View Article and Find Full Text PDF