Publications by authors named "Yang-Hao Chan"

Excitons are vital in the photophysics of materials, especially in low-dimensional systems. The conceptual and quantitative understanding of excitonic effects in nonlinear optical (NLO) processes is more challenging compared to linear ones. Here, we present an ab initio approach to second-order NLO responses, incorporating excitonic effects, that employs an exciton-state coupling formalism and allows for a detailed analysis of the role of individual excitonic states.

View Article and Find Full Text PDF

Excitons are fundamental quasiparticles that are ubiquitous in photoexcited semiconductors and insulators. Despite causing a sharp and strong photoabsorption near the interband absorption edge, charge-neutral excitons do not yield photocurrent in conventional photovoltaic processes unless dissociated into free charge carriers. Here, we experimentally demonstrate that excitons can directly contribute to photocurrent generation through a nonlinear light-matter interaction in a noncentrosymmetric semiconductor CuI.

View Article and Find Full Text PDF

Extrinsic dilute magnetic semiconductors achieve magnetic functionality through tailored interaction between a semiconducting matrix and a non-magnetic dopant. The absence of intrinsic magnetic impurities makes this approach promising to investigate the newly emerging field of 2D dilute magnetic semiconductors. Here the first realization of an extrinsic 2D DMS in Pt-doped WS is demonstrated.

View Article and Find Full Text PDF

Many-body effects play an important role in enhancing and modifying optical absorption and other excited-state properties of solids in the perturbative regime, but their role in high harmonic generation (HHG) and other nonlinear response beyond the perturbative regime is not well-understood. We develop here an ab initio many-body method to study nonperturbative HHG based on the real-time propagation of the non-equilibrium Green's function with the GW self energy. We calculate the HHG of monolayer MoS and obtain good agreement with experiment, including the reproduction of characteristic patterns of monotonic and nonmonotonic harmonic yield in the parallel and perpendicular responses, respectively.

View Article and Find Full Text PDF

Despite the weak, van der Waals interlayer coupling, photoinduced charge transfer vertically across atomically thin interfaces can occur within surprisingly fast, sub-50 fs time scales. An early theoretical understanding of charge transfer is based on a noninteracting picture, neglecting excitonic effects that dominate optical properties of such materials. We employ an many-body perturbation theory approach, which explicitly accounts for the excitons and phonons in the heterostructure.

View Article and Find Full Text PDF

Composite topological heterostructures, wherein topologically protected states are electronically tuned due to their proximity to other matter, are key avenues for exploring emergent physical phenomena. Particularly, pairing a topological material with a superconductor such as Pb is a promising means for generating a topological superconducting phase with exotic Majorana quasiparticles, but oft-neglected is the emergence of bulklike spin-polarized states that are quite relevant to applications. Using high-resolution photoemission spectroscopy and first-principles calculations, we report the emergence of bulk-like spin-polarized topological quantum well states with long coherence lengths in Pb films grown on the topological semimetal Sb.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores optical dynamics in van der Waals heterobilayers, focusing on a new many-electron channel that converts excitations from one layer to another.
  • Using a time-dependent adiabatic GW approach, researchers found that strong electron-hole interactions significantly enhance optical responses in these materials.
  • The findings indicate a rise time of about 300 femtoseconds in MoSe₂/WSe₂ heterobilayers, aligning well with experimental observations.
View Article and Find Full Text PDF

Transition metal dichalcogenide (TMD) moiré superlattices provide an emerging platform to explore various light-induced phenomena. Recently, the discoveries of novel moiré excitons have attracted great interest. The nonlinear optical responses of these systems are however still underexplored.

View Article and Find Full Text PDF

Coulomb interactions among electrons and holes in 2D semimetals with overlapping valence and conduction bands can give rise to a correlated insulating ground state via exciton formation and condensation. One candidate material in which such excitonic state uniquely combines with non-trivial band topology are atomic monolayers of tungsten ditelluride (WTe ), in which a 2D topological excitonic insulator (2D TEI) forms. However, the detailed mechanism of the 2D bulk gap formation in WTe , in particular with regard to the role of Coulomb interactions, has remained a subject of ongoing debate.

View Article and Find Full Text PDF

Strain engineering has quickly emerged as a viable option to modify the electronic, optical, and magnetic properties of 2D materials. However, it remains challenging to arbitrarily control the strain. Here we show that, by creating atomically flat surface nanostructures in hexagonal boron nitride, we achieve an arbitrary on-chip control of both the strain distribution and magnitude on high-quality molybdenum disulfide.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the dynamics of excitons in photovoltaic and optoelectronic devices, highlighting challenges in understanding their behavior due to interactions between electrons, phonons, and multiple electrons.
  • A first-principles approach is used to investigate exciton-phonon coupling in monolayer MoS, revealing that this coupling is highly selective based on the excitons' internal spin structure, resulting in a long lifetime for the bright A exciton.
  • The research emphasizes the importance of applying second-order perturbation theory for optical absorption, treating photons and phonons equally, which leads to improved modeling of dephasing mechanisms and aligns well with experimental findings on exciton line widths.
View Article and Find Full Text PDF

Electrons and holes can spontaneously form excitons and condense in a semimetal or semiconductor, as predicted decades ago. This type of Bose condensation can happen at much higher temperatures in comparison with dilute atomic gases. Two-dimensional (2D) materials with reduced Coulomb screening around the Fermi level are promising for realizing such a system.

View Article and Find Full Text PDF
Article Synopsis
  • Moiré patterns in transition metal dichalcogenide heterobilayers can host unique correlated electronic phases and exciton physics, but their microscopic nature is not well understood.
  • Using advanced computational techniques and micro-reflection spectroscopy, researchers identified new exciton resonances in WSe/WS moiré superlattices that go beyond existing models.
  • The study reveals diverse excitonic behaviors, including modulated Wannier excitons and novel charge-transfer excitons, with potential implications for controlling many-body physics in these systems.
View Article and Find Full Text PDF

Shift current is a direct current generated from nonlinear light-matter interaction in a noncentrosymmetric crystal and is considered a promising candidate for next-generation photovoltaic devices. The mechanism for shift currents in real materials is, however, still not well understood, especially if electron-hole interactions are included. Here, we employ a first-principles interacting Green's-function approach on the Keldysh contour with real-time propagation to study photocurrents generated by nonlinear optical processes under continuous wave illumination in real materials.

View Article and Find Full Text PDF

Materials modelling and design using computational quantum and classical approaches is by now well established as an essential pillar in condensed matter physics, chemistry and materials science research, in addition to experiments and analytical theories. The past few decades have witnessed tremendous advances in methodology development and applications to understand and predict the ground-state, excited-state and dynamical properties of materials, ranging from molecules to nanoscopic/mesoscopic materials to bulk and reduced-dimensional systems. This issue of Nature Materials presents four in-depth Review Articles on the field.

View Article and Find Full Text PDF

The origin of a ubiquitous bosonic coupling feature in the photoemission spectra of high-T_{c} cuprates, an energy-momentum dispersion "kink" observed at ∼70  meV binding energy, remains a two-decade-old mystery. Understanding this phenomenon requires an accurate description of the coupling between the electron and some collective modes. We report here ab initio calculations based on GW perturbation theory and show that correlation-enhanced electron-phonon interaction in cuprates gives rise to the strong kinks, which not only explains quantitatively the observations but provides new understanding of experiments.

View Article and Find Full Text PDF

Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudomagnetic field effects, helical flat bands, and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here we show that the Dirac surface states of the topological insulator BiSe can be reversibly tuned by an externally applied elastic strain.

View Article and Find Full Text PDF

We report a rectangular charge density wave (CDW) phase in strained 1T-VSe thin films synthesized by molecular beam epitaxy on -sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4×√3 periodicity, as opposed to the previously reported hexagonal 4×4 structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same 4×√3 CDW periodicity and an energy gap of 2 = (9.

View Article and Find Full Text PDF

Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy, we have observed such bulk Dirac cones in epitaxially grown α-Sn films on InSb(111), the first such TDS system realized in an elemental form.

View Article and Find Full Text PDF

The observation of phonons in graphene by inelastic electron tunneling spectroscopy has been met with limited success in previous measurements arising from weak signals and other spectral features which inhibit a clear distinction between phonons and miscellaneous excitations. Utilizing a back-gated graphene device that allows adjusting the global charge carrier density, we introduce an averaging method where individual tunneling spectra at varying charge carrier density are combined into one representative spectrum. This method improves the signal for inelastic transitions while it suppresses dispersive spectral features.

View Article and Find Full Text PDF

Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence.

View Article and Find Full Text PDF