Publications by authors named "Yang-Fan Deng"

This study proposes the Sulphate reduction, mixed sulphide- and thiosulphate-driven Autotrophic denitrification, Nitrification, and Anammox integrated (SANIA) process for sustainable treatment of mainstream wastewater after organics capture. Three moving-bed biofilm reactors (MBBRs) were applied for developing sulphate reduction (SR), mixed sulphide- and thiosulphate-driven partial denitrification and Anammox (MSPDA), and NItrification (N), respectively. Typical mainstream wastewater after organics capture (e.

View Article and Find Full Text PDF

Anoxic ammonium oxidation (anammox) is an energy-efficient nitrogen removal process for wastewater treatment. However, the unstable nitrite supply and residual nitrate in the anammox process have limited its wide application. Recent studies have proven coupling of sulfur-based denitrification with anammox (SDA) can achieve an effective nitrogen removal, owing to stable provision of substrate nitrite from the sulfur-based denitrification, thus making its process control more efficient in comparison with that of partial nitrification and anammox process.

View Article and Find Full Text PDF

Recently, the integration of sulfur-driven denitrification and anammox process has been extensively studied as a promising alternative nitrogen removal technology. Most of these studies investigated the process feasibility and monitored the community dynamics. However, an in-depth understanding of this new sulfur-nitrogen cycle bioprocess based on mathematical modeling and elucidation of complex interactions among different microorganisms has not yet been achieved.

View Article and Find Full Text PDF

Anaerobic ammonia oxidation (anammox) is a well-developed biotechnology for treating high-strength ammonium wastewaters. Recently, partial denitrification has been considered as an alternative to supply anammox with the required nitrite. In this study, a process of sulfide-driven partial denitrification and anammox (SPDA) was developed and operated continuously in an upflow anaerobic sludge blanket (UASB) reactor for 392 days.

View Article and Find Full Text PDF

An energy-/cost-efficient and environment-friendly in-situ sludge reduction process, called the sulfidogenic oxic-settling anaerobic (SOSA) was developed recently. However, the underpinning mechanism of sludge reduction by the SOSA process remains elusive. This paper investigated the possible mechanisms of sludge reduction through biomass cultivation in three lab-scale experimental systems: one anoxic-oxic CAS process with a long sludge retention time (SRT) and extended aeration (EAO) process, and two EAO-based in-situ sludge reduction processes, i.

View Article and Find Full Text PDF

This study investigated the feasibility of a new biological nitrogen removal process that integrates sulfur-driven autotrophic denitratation (NO→NO) and anaerobic ammonium oxidation (Anammox) for simultaneous removal of nitrate and ammonium from industrial wastewater. The proposed sulfur(thiosulfate)-driven denitratation and Anammox process was developed in two phases: First, the thiosulfate-driven denitratation was established in the UASB inoculated with activated sludge and fed with ammonium, nitrate and thiosulfate for 52 days until the nitrite level in the effluent reached 32.1 mg N/L.

View Article and Find Full Text PDF

The sulfide-oxidizing autotrophic denitrification (SOAD) process offers a feasible alternative to mainstream heterotrophic denitrification in treating domestic sewage with insufficient organics. Previously SOAD has been successfully applied in a moving-bed biofilm reactor (MBBR). However, the biofilm properties and biokinetics are still not thoroughly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Biological denitrification in wastewater treatment typically requires added electrons, increasing costs, with organic carbon being the primary electron source.
  • In light of climate change, there's a push for low-carbon technologies, making autotrophic denitrification using reduced-sulphur compounds a promising alternative.
  • This paper explores sulphur-driven autotrophic denitrification, focusing on key enzymes, bioreactor design, and operational factors, offering insights into its low-carbon potential for nitrogen removal in municipal wastewater treatment.
View Article and Find Full Text PDF