Publications by authors named "Yang Zikang"

Traditional fluorescence intensity-based probes face challenges in accurately measuring mitochondrial membrane potential (MMP) due to intramolecular fluorescence quenching. In this work, we introduce a novel approach by incorporating quenching moieties within the zwitterionic probe to eliminate self-quenching interference, thus, enabling real-time and precise visualization of reversible MMP changes. We synthesized a zwitterionic fluorescent probe consisting of silicon-rhodamine (SiR) that was hydroxyl-substituted on the bay position of perylene diimides (PDIs) connected via a polyethylene glycol (PEG) linker.

View Article and Find Full Text PDF

The adjustment of the emission wavelengths and cell permeability of the perylene diimides (PDI) for multicolor cell imaging is a great challenge. Herein, based on a bay-region substituent engineering strategy, multicolor perylene diimides () were rationally designed and synthesized by introducing azetidine substituents on the bay region of PDIs. With the fine-tuned electron-donating ability of the azetidine substituents, these showed high brightness, orange, red, and near infrared (NIR) fluorescence along with Stokes shifts increasing from 35 to 110 nm.

View Article and Find Full Text PDF

Mitochondrial probe SiRPFA was synthesized by attaching a long perfluoroalkyl chain on Si-rhodamine cationic dye. High lipophilicity endowed SiRPFA with mitochondrial membrane potential independent properties. Under stimulated emission depletion microscopy, SiRPFA clearly revealed changes in mitochondrial cristae morphology during autophagy induced by starvation or apoptosis.

View Article and Find Full Text PDF

Triggering receptor expressed on myeloid cells-2 (TREM2), a cell surface receptor mainly expressed on microglia, has been shown to play a critical role in Alzheimer's disease (AD) pathogenesis and progression. Our recent results showed that overexpression of TREM2 inhibited inflammatory response in APP/PS1 mice and BV2 cells. Several studies indicated that TREM2 ameliorated tau hyperphosphorylation might be ascribed to the inhibition of neuroinflammation.

View Article and Find Full Text PDF

Due to their strong hydrophobicity and the aggregation-caused quenching effect, the application of perylene diimide (PDI) dyes in biological and medicinal fields lags far behind that of other dyes. Based on a multifunctional encapsulation strategy, we prepared isopropylphenyl sulfone encapsulated PDI dyes (SFPDIs). The four hydrophilic sulfone groups on the bay position of the PDIs not only effectively inhibit the fluorescence quenching caused by π-aggregation but also endow the SFPDIs with good live-cell permeability.

View Article and Find Full Text PDF

Activation of glial cells and neuroinflammation play an important role in the onset and development of Alzheimer's disease (AD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglia-specific receptor in the brain that is involved in regulating neuroinflammation. However, the precise effects of TREM2 on neuroinflammatory responses and its underlying molecular mechanisms in AD have not been studied in detail.

View Article and Find Full Text PDF

The present study investigated the effectiveness of electromagnetic fields in preventing calcium carbonate (CaCO₃) fouling in cooling water. Four different frequencies and two different voltages were adopted to induce electromagnetic fields directly in water with constant water temperature and constant flow velocity. Artificial hard water was used.

View Article and Find Full Text PDF