Acute ischemic stroke (AIS), as the third leading cause of death worldwide, is characterized by its high incidence, mortality rate, high incurred disability rate, and frequent reoccurrence. The neuroprotective effects of Ginkgo biloba extract (GBE) against several cerebral diseases have been reported in previous studies, but the underlying mechanisms of action are still unclear. Using a novel in vitro rat cortical capillary endothelial cell-astrocyte-neuron network model, we investigated the neuroprotective effects of GBE and one of its important constituents, Ginkgolide B (GB), against oxygen-glucose deprivation/reoxygenation and glucose (OGD/R) injury.
View Article and Find Full Text PDFEGFR is required for animal development, and dysregulation of EGFR is critically implicated in malignant transformation. However, the molecular mechanism underlying the regulation of EGFR expression remains poorly explored. Here we report that the zinc-finger protein ZNF516 is a transcription repressor.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
September 2016
In order to figure out the status and distribution of the wild and cultivated resources of traditional Chinese medicine Daphnes Cortex, its suitable habitat and endangering factors were analyzed to provide the basis for its rational use, protection and cultivation.Our research group tooka resources survey in Shanxi, Gansu, Sichuan and Qinghai provinces, which include 23 counties. Investigation and sampling investigation combined with interview were carried out.
View Article and Find Full Text PDFThe assembly and post-splicing reassembly of the U4/U6.U5 tri-snRNP remain to be investigated. We report here that ZIP, a protein containing a CCCH-type zinc finger and a G-patch domain, as characterized by us previously, regulates pre-mRNA splicing independent of RNA binding.
View Article and Find Full Text PDFObjectives: This study aims to assess whether iodine-contained contrast agents with different osmolarity affect iodine delivery protocol during coronary computed tomography angiography (CCTA).
Methods: Patients who underwent CCTA were randomized to receive contrast media either iodixanol-320 (iso-osmolar group) or iopromide-370 (low-osmolar group). Contrast protocols were recorded.
Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs.
View Article and Find Full Text PDFMajor depression has been interpreted as an inflammatory disease characterized by cell-mediated immune activation, which is generally triggered by various stresses. Microglia has been thought to be the cellular link between inflammation and depression-like behavioural alterations. The expression of cathepsin C (Cat C), a lysosomal proteinase, is predominantly induced in microglia in neuroinflammation.
View Article and Find Full Text PDFThe immuno-inflammatory activation triggered by various stresses play an important role in pathophysiology of depression. The immune responses display differential pathological characters in different stresses. However, comparative data and analysis on behavioural, inflammatory and neurochemical changes in different stress-induced depression is limited.
View Article and Find Full Text PDFFaithful transmission or restoration of epigenetic information such as repressive histone modifications through generations is critical for the maintenance of cell identity. We report here that chromodomain Y-like protein (CDYL), a chromodomain-containing transcription corepressor, is physically associated with chromatin assembly factor 1 (CAF-1) and the replicative helicase MCM complex. We showed that CDYL bridges CAF-1 and MCM, facilitating histone transfer and deposition during DNA replication.
View Article and Find Full Text PDFEpilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases.
View Article and Find Full Text PDFBackground: Domain of Unknown Function 266 (DUF266) is a plant-specific domain. DUF266-containing proteins (DUF266 proteins) have been categorized as 'not classified glycosyltransferases (GTnc)' due to amino acid similarity with GTs. However, little is known about the function of DUF266 proteins.
View Article and Find Full Text PDFDuring symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as 'effectors', i.e.
View Article and Find Full Text PDFAlthough the precise mechanism underlying initial lesion development in multiple sclerosis (MS) remains unclear, CNS inflammation has long been associated with demyelination, and axonal degeneration. The activation of microglia/macrophages, which serve as innate immune cells in the CNS, is the first reaction to even minor pathologic changes in the CNS and is considered an initial pathogenic event in MS. Microglial activation accompanies a variety of gene expressions, including cystatin F (Cys F), which belongs to the cystatin superfamily and is one of the cathepsin inhibitors.
View Article and Find Full Text PDFAcute ischemic stroke (AIS) accounts for more than 80% of the approximately 610,000 new stroke cases worldwide every year. Both ischemia and reperfusion can cause death, damage, and functional changes of affected nerve cells, and these alterations can result in high rates of disability and mortality. Therefore, therapies aimed at increasing neuroprotection and neurorepair would make significant contributions to AIS management.
View Article and Find Full Text PDFAlready a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C and C photosynthesis) day/night pattern of stomatal closure/opening to shift CO uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C model plant Arabidopsis.
View Article and Find Full Text PDFBackground: Receptor-like kinases (RLKs) belong to a large protein family with over 600 members in Arabidopsis and over 1000 in rice. Among RLKs, the lectin receptor-like kinases (LecRLKs) possess a characteristic extracellular carbohydrate-binding lectin domain and play important roles in plant development and innate immunity. There are 75 and 173 LecRLKs in Arabidopsis and rice, respectively.
View Article and Find Full Text PDFN-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine N(ε)-acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine.
View Article and Find Full Text PDFS-Adenosyl-l-methionine (SAM) dependent xanthosine methyltransferase (XMT) is the key enzyme that catalyzes the first methyl transfer in the caffeine biosynthesis pathway to produce the intermediate 7-methylxanthosine (7mXR). Although XMT has been a subject of extensive discussions, the catalytic mechanism and nature of the substrate involved in the catalysis are still unclear. In this paper, quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (potential of mean force or PMF) simulations are undertaken to determine the catalytic mechanism of the XMT-catalyzed reaction.
View Article and Find Full Text PDFCurr Opin Plant Biol
June 2016
The production of phosphoenolpyruvate as a substrate for nocturnal CO2 uptake represents a significant sink for carbohydrate in CAM plants which has to be balanced with the provisioning of carbohydrate for growth and maintenance. In starch-storing CAM species, diversification in chloroplast metabolite transporters, and the deployment of both phosphorolytic and hydrolytic routes of starch degradation accommodate a division of labour in directing C-skeletons towards nocturnal carboxylation or production of sucrose for growth. In soluble-sugar storing CAM plants, the vacuole plays a central role in managing carbon homeostasis.
View Article and Find Full Text PDFPlant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.
View Article and Find Full Text PDFGenome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. This article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation of gene expression, and identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.
View Article and Find Full Text PDFBackground: Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA.
View Article and Find Full Text PDFSuccessful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. Here, we describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly.
View Article and Find Full Text PDF