Publications by authors named "Yang Xiaoe"

Background: Intensive monoculture poses a serious threat to agricultural sustainable development due to the phenomenon of continuous cropping obstacles. Although organic amendment has been considered an efficient and environmentally friendly solution to mitigate this tough issue, the associated mechanisms remain poorly understood. Here, a two-year field experiment was conducted with the application of four fertilizers, wood, rice straw, compound biochar-based organic fertilizers (WBF, RBF, CBF) and chemical fertilizer (CF) under tobacco rotation with broad bean and oilseed rape, respectively.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in agricultural soils is one of the major environmental challenges globally. Biochar is a promising material for mitigating Cd pollution, but it carries the risk of increasing greenhouse gas emissions. Herein, we incorporate iron-based materials into biochar to simultaneously enhance soil nutrients, mitigate heavy metal contamination, and reduce greenhouse gas emissions.

View Article and Find Full Text PDF

Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans ( L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored.

View Article and Find Full Text PDF

Heavy metal pollution in soil is a significant challenge around the world, particularly cadmium (Cd) contamination. In situ phytoextraction and remediation technology, particularly focusing on Cd hyperaccumulator plants, has proven to be an effective method for cleaning Cd-contaminated agricultural lands. However, this strategy is often hindered by a long remediation cycle and low efficiency.

View Article and Find Full Text PDF

The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification.

View Article and Find Full Text PDF

Rice may absorb Cadmium (Cd) from the air through its leaves. The process of Cd foliar absorption, accumulation, and redistribution is yet unknown, nevertheless. In this study, the process of Cd absorption from rice leaves and its accumulation and redistribution during all stages of the rice plant's growth were examined.

View Article and Find Full Text PDF

Calcium (Ca) is a vital nutrient essential for structural development and signal transmission in both plants and animals. In humans, inadequate calcium intake has been correlated with various diseases, including osteoporosis, cardiovascular and cerebrovascular diseases, and cancer. In areas where plants serve as a main dietary source, calcium intake is significantly lower than the recommended adequate intake, notably in low- and middle-income countries (LMICs).

View Article and Find Full Text PDF

Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (K = 0.

View Article and Find Full Text PDF

Phytoremediation coupled with agroproduction (PCA) model contributes to sustainable agriculture and environmental management. This study investigated the impact of continuous cropping early/late season rice (RR) and Sedum alfredii-rice rotation (SR) on soil physical and chemical properties, as well as their relationships with soil microbial community. In 2022, SR treatment significantly increased pH value and organic matter content by 7 % and 17 %, respectively, compared to the levels in 2020, while RR treatment showed no change.

View Article and Find Full Text PDF

The impact of cadmium (Cd) and fluorine (F) on plant and human health has provoked significant public concern; however, their combined effects on plant and soil bacterial communities have yet to be determined. Here, a pot experiment was conducted to evaluate the effects of exogenous F, Cd, and their combination (FCd) on lettuce growth and soil bacterial communities. The results revealed that F and Cd concentrations in lettuce ranged from 63.

View Article and Find Full Text PDF

The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.

View Article and Find Full Text PDF

Limited research has focused on nanoparticle (NP) applications' impact on edible wheat parts in a field environment. Here, we studied the nutritional quality of edible parts of wheat ( L.) with a field experiment by spraying MnFeO nanoparticles.

View Article and Find Full Text PDF

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S.

View Article and Find Full Text PDF

Foliar application has been reported as an effective method to facilitate plant growth and mitigate cadmium (Cd) accumulation. However, the application of foliar fertilizers on plant production, Cd uptake and health risks of Solanaceae family remains unknown. In this study, four foliar fertilizers were applied to investigate their effects on the production, Cd accumulation and human health risk assessment of two varieties of pepper (Capsicum annuum L.

View Article and Find Full Text PDF

The application of carbon nanoparticles (CNPs) and biochar in agriculture for improving plant health and soil quality and alleviating metal stress offers alternative approaches to meet the ever-increasing demand for food. However, poor understanding of their roles in improving crop production under Cu stress represents a significant obstacle to their wide application in agriculture. To clarify how CNPs and biochar affect corn (Zea mays L.

View Article and Find Full Text PDF

The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.

View Article and Find Full Text PDF

Foliar application of zinc (Zn) or silicon nanoparticles (Si-NPs) may exert regulatory effects on cadmium (Cd) accumulation in rice grains, however, their impact on Cd bioavailability during human rice consumption remains elusive. This study comprehensively investigated the application of Zn with or without Si-NPs in reducing Cd accumulation in rice grains as well to exactly evaluate the potential risk of Cd exposure resulting from the rice consumption by employing field experiment as well laboratory bioaccessibility and bioavailability assay. Sole Zn (ZnSO) or in combination with Si (ZnSO +Si and ZnO+Si) efficiently lowered the Cd concentration in rice grains.

View Article and Find Full Text PDF

The phytoremediation efficiency of plants in removing the heavy metals (HMs) might be influenced by their growth status and accumulation capacity of plants. Herein, we conducted a lab-scale experiment and a field try out to assess the optimal plant growth regulators (PGRs) including indole-3-acetic acid (IAA)/brassinolide (BR)/abscisic acid (ABA) in improving the phytoextraction potential of Sedum alfredii Hance (S. alfredii).

View Article and Find Full Text PDF

The phytohormones cytokinins (CKs) are known to regulate apical/auxiliary meristems, control shoot growth and are associated with nutrient uptake and high biomass production. In this study, different cytokinins were tested on Sedum alfredii (S.alfredii) for shoot proliferation and growth performance as well as their correlation with phytoextraction efficiency.

View Article and Find Full Text PDF

Modeling plants for biomass production and metal uptake from surrounding environment is strongly dependent on the moisture content of soil. Therefore, experiments were conducted to find out how soil moisture affects the phenotypic traits, photosynthetic efficiency, metabolic profile, and metal accumulation in the hyperaccumulating ecotype of Sedum alfredii (S. alfredii).

View Article and Find Full Text PDF

Heavy metal pollution in metropolitan soils poses significant risks to human health and the entire ecosystem. Effective mitigation strategies and technologies are crucial for addressing these environmental issues. Fast-growing trees are an essential part of phytoremediation projects all over the world and provide long-term ecological benefits to mankind.

View Article and Find Full Text PDF

Application of crop residues and chemical nitrogen (N) fertilizer is a conventional practice for achieving high yield in a rice system. However, the fallacious combination of N fertilizers with crop straw not only significantly reduces the N use efficiencies (NUEs) but also leads to serious environmental problems. The present study employed five treatments including no N fertilization and no straw incorporation (ck), N fertilization incorporation only (S0), N fertilization with 40% straw (S), N fertilization with 60% straw (S), and N fertilization with 100% straw (S) to improve N use efficiency as well as reduced Cd distribution in rice.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how cadmium (Cd) bioavailability in the rhizosphere impacts Cd accumulation in two wheat genotypes: a low-Cd-accumulating genotype (LT) and a high-Cd-accumulating genotype (HT).
  • Results demonstrate that while total Cd concentration is similar across different soils, HT genotype shows higher DTPA-Cd levels in most soils, suggesting increased Cd availability.
  • Bacterial community analysis reveals that soil type significantly influences the bacterial composition, with HT's rhizosphere containing taxa that may enhance Cd uptake, while LT's rhizosphere is enriched with beneficial bacteria that promote plant growth.
View Article and Find Full Text PDF

Humans are mainly exposed to cadmium (Cd) due to the rice consumption, however there exist considerable differences across rice cultivars in terms of Cd absorption and accumulation in the grains, and subsequent release after digestion (bioaccessibility), as well as uptake by Caco-2 cells of humans (bioavailability). This study comprised of field and lab simulation trials where in the field, firstly 39 mid-rice cultivars were screened for their phytoremediation potential coupled with safe production in relation to uptake and translocation of Cd. Lower Cd concentrations (˂0.

View Article and Find Full Text PDF

In recent decades, China has devoted significant attention to the heavy metals pollution in particulate matter. However, the majority of studies have only focused on the field monitoring in relatively remote areas, which may not be representative of air quality across the country. This study reevaluated the characteristics, temporal and spatial changes, and health concerns associated with heavy metal pollution in atmospheric particulates on a national scale by coupling Meta-analysis and Monte Carlo simulation analysis.

View Article and Find Full Text PDF