Hybrid organic-inorganic lead halide perovskite solar cells (PSCs) have rapidly emerged as a promising photovoltaic technology, with record efficiencies surpassing 26%, approaching the theoretical Shockley-Queisser limit. The advent of all-perovskite tandem solar cells (APTSCs), integrating Pb-based wide-bandgap (WBG) with mixed Sn-Pb narrow-bandgap (NBG) perovskites, presents a compelling pathway to surpass this limit. Despite recent innovations in hole transport layers (HTLs) that have significantly improved the efficiency and stability of lead-based PSCs, an effective HTL tailored for Sn-Pb NBG PSCs remains an unmet need.
View Article and Find Full Text PDFLead-free double perovskites (DPs) have become notable in white light emission applications due to the self-trapped exciton (STE) formation in the excited state. However, the mechanism understanding of the excited state dynamics and transport of STE remains ambiguous. Here, we demonstrate a new STE (Bi-STE) forming in tiny Bi-doped CsNaAgInCl, alongside its intrinsic STE (i-STE), resulting in the DPs photoluminescence quantum yield (PLQY) increasing to as high as >90%.
View Article and Find Full Text PDFWide-bandgap (WBG) perovskites play a crucial role in perovskite-based tandem cells. Despite recent advances using self-assembled monolayers (SAMs) to facilitate efficiency breakthroughs, achieving precise control over the deposition of such ultrathin layers remains a significant challenge for large-scale fabrication of WBG perovskite and, consequently, for the tandem modules. To address these challenges, we propose a facile method that integrates MeO-2PACz and Me-4PACz in optimal proportions (Mixed SAMs) into the perovskite precursor solution, enabling the simultaneous codeposition of WBG perovskite and SAMs.
View Article and Find Full Text PDFZero-dimensional (0D) organic metal halides comprising heterogeneous metal cations in single phase can achieve multiple luminous emissions enabling them toward multifunctional light-emitting applications. Herein, A novel single crystal of (CHN)SbMnCl containing two luminescent centers of [SbCl] pentahedrons and [MnCl] tetrahedrons is reported. The large distance between Sb-Sb, Mn-Mn, and Sb-Mn as well as theory calculation indicate negligible interaction between individual centers, thus endowing (CHN)SbMnCl with excitation-dependable and efficient luminescence.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2023
Conventional flat panel X-ray imaging (FPXI) employs a single scintillator for X-ray conversion, which lacks energy spectrum information. The recent innovation of employing multilayer scintillators offers a route for multispectral X-ray imaging. However, the principles guiding optimal multilayer scintillator configuration selection and quantitative analysis models remain largely unexplored.
View Article and Find Full Text PDFMetal halide crystals are bright but hygroscopic scintillator materials that are widely used in X-ray imaging and detectors. Precipitating them in situ in glass to form glass ceramics (GCs) scintillator offers an efficient avenue for large-scale preparation, high spatial resolution, and excellent stability. However, precipitating a high fraction of metal halide nanocrystals in glass to maintain high light yield remains a challenge.
View Article and Find Full Text PDFMetal halide perovskites are promising for next-generation flexible photodetectors owing to their low-temperature solution processability, mechanical flexibility, and excellent photoelectric properties. However, the defects and notorious ion migration in polycrystalline metal halide perovskites often lead to high and unstable dark current, thus deteriorating their detection limit and long-term operations. Here, we propose an electrical field modulation strategy to significantly reduce the dark current of metal halide perovskites-based flexible photodetector more than 1000 times (from ~5 nA to ~5 pA).
View Article and Find Full Text PDFTraditional indirect flat-panel X-ray imaging (FPXI) uses inorganic scintillators with high-Z elements, which lack spectral information about X-ray photons and reflect only integrated X-ray intensity. To address this issue, we developed a stacked scintillator structure that combines organic and inorganic materials. This structure allows X-ray energies to be distinguished in a single shot by using a color or multispectral visible camera.
View Article and Find Full Text PDFWhether and how an electron-hole pair at the donor-acceptor interface separates from their mutual Coulombic interaction has been a long-standing question for both fundamental interests and optoelectronic applications. This question is particularly interesting but yet to be unraveled in the emerging mixed-dimensional organic/2D semiconductor excitonic heterostructures where the Coulomb interaction is poorly screened. Here, by tracking the characteristic electroabsorption (Stark effect) signal from separated charges using transient absorption spectroscopy, we directly follow the electron-hole pair separation process in a model organic/2D heterostructure, vanadium oxide phthalocyanine/monolayer MoS.
View Article and Find Full Text PDFHole-transport materials (HTMs) play an important role in perovskite solar cells (PSCs) to enhance the power conversion efficiency (PCE). The innovation of HTMs can increase the hole extraction ability and reduce interfacial recombination. Three organic small molecule HTMs with 4-cyclopenta[2,1-:3,4-']dithiophene (CPDT) as the central unit was designed and synthesized, namely, CPDTE-MTP (with the 2-ethylhexyl substituent and diphenylamine derivative end-group), CPDT-MTP (with the hexyl substituent and diphenylamine derivative end-group), and CPDT-PMTP (with the hexyl substituent and triphenylamine derivative end-group), which can form bifunctional and robust hole transport layer (HTL) on ITO and is tolerable to subsequent solvent and thermal processing.
View Article and Find Full Text PDFReducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.
View Article and Find Full Text PDFAlthough perovskite X-ray detectors have revealed promising properties, their dark currents are usually hundreds of times larger than the practical requirements. Here, we report a detector architecture with a unique shunting electrode working as a blanking unit to suppress dark current, and it theoretically can be reduced to zero. We experimentally fabricate the dark-current-shunting X-ray detector, which exhibits a record-low dark current of 51.
View Article and Find Full Text PDFThe calculation method for light emission efficiency splits external quantum efficiency (EQE) into internal quantum efficiency (IQE) and light extraction efficiency (LEE) independently. Consequently, the IQE connected to Purcell factor and the LEE are calculated separately. This traditional method ignores the interplays between the Purcell factor and transmittance coefficient in spectral domain, which all strongly depend on emitting directions.
View Article and Find Full Text PDFConventional energy-integration black-white X-ray imaging lacks the spectral information of X-ray photons. Although X-ray spectra (energy) can be distinguished by the photon-counting technique typically with CdZnTe detectors, it is very challenging to be applied to large-area flat-panel X-ray imaging (FPXI). Herein, multilayer stacked scintillators of different X-ray absorption capabilities and scintillation spectra are designed; in this scenario, the X-ray energy can be discriminated by detecting the emission spectra of each scintillator; therefore, multispectral X-ray imaging can be easily obtained by color or multispectral visible-light camera in a single shot of X-rays.
View Article and Find Full Text PDFHybrid heterostructures (HSs) comprising organic and two-dimensional (2D) monolayer semiconductors hold great promise for optoelectronic applications. So far, research efforts on organic/2D HSs have exclusively focused on coupling directly photoexcited singlets to monolayer semiconductors. It remains unexplored whether and how the optically dark triplets in organic semiconductors with intriguing properties (e.
View Article and Find Full Text PDFLead halide perovskites possess heavy elements and excellent mobility-lifetime (µτ) product, becoming desirable candidates for X-ray detectors. However, current perovskite photoconduction detectors (PCDs) with vertical geometry, where electronic signals and mobile ions share the same conduction path, are facing with extremely challenging ion-migration issue. Herein, a hybrid X-ray detector device structure, in which perovskite is vertically stacked onto an indium oxide (In O ) transistor with lateral transport geometry is designed, perovskite mainly acts as X-ray sensitizer to activate In O conduction channel, the actual electrical signal is conducted and collected in the lateral metal-oxide device.
View Article and Find Full Text PDFLead-free metal halide light-emitting diodes (LEDs) based on cesium copper halide (CsCuI) self-trapped-exciton (STE) emissions show great potential in lighting and color display applications, especially because of their nontoxicity and earth abundance. However, so far, the efficiency and color purity of CsCuI-based LEDs remain low. Here we demonstrate the emission of a CsCuI emitter can be enhanced and narrowed in a top-emitting microcavity device.
View Article and Find Full Text PDFCsCuI nanocrystals (NCs) are considered to be promising materials due to their high photoluminescence efficiency and X-ray hardness. However, the present strategy depends on tedious fabrication with excessive chemical waste. The evasive iodide ion dissociation, inadaptable ligand system, low stability, and relatively low light yield severely impede their applications.
View Article and Find Full Text PDFThe traditional way to stabilize α-phase formamidinium lead triiodide (FAPbI ) perovskite often involves considerable additions of methylammonium (MA) and bromide into the perovskite lattice, leading to an enlarged bandgap and reduced thermal stability. This work shows a seed-assisted growth strategy to induce a bottom-up crystallization of MA-free perovskite, by introducing a small amount of α-CsPbBr /DMSO (5%) as seeds into the pristine FAPbI system. During the initial crystalization period, the typical hexagonal α-FAPbI crystals (containing α-CsPbBr seeds) are directly formed even at ambient temperature, as observed by laser scanning confocal microscopy.
View Article and Find Full Text PDFX-ray detection, which plays an important role in medical and industrial fields, usually relies on inorganic scintillators to convert X-rays to visible photons; although several high-quantum-yield fluorescent molecules have been tested as scintillators, they are generally less efficient. High-energy radiation can ionize molecules and create secondary electrons and ions. As a result, a high fraction of triplet states is generated, which act as scintillation loss channels.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2021
High-performance X-ray detectors are usually based on single crystals, due to the long-range ordering and hence outstanding electronic properties. On the other hand, bulk heterojunctions (BHJs) that can effectively enhance photogenerated exciton dissociation are widely used for photodetectors. The benefits of both spur investigation into how to combine these two strategies to enhance X-ray detection.
View Article and Find Full Text PDFThere are few reports about purely organic phosphorescence scintillators, and the relationship between molecular structures and radioluminescence in organic scintillators is still unclear. Here, we presented isomerism strategy to study the effect of molecular structures on radioluminescence. The isomers can achieve phosphorescence efficiency of up to 22.
View Article and Find Full Text PDFScintillation-based X-ray excited optical luminescence (XEOL) imaging shows great potential applications in the fields of industrial security inspection and medical diagnosis. It is still a great challenge to achieve scintillators simultaneously with low toxicity, high stability, strong XEOL intensity, and weak afterglow as well as simple device processibility with weak light scattering. Herein, we introduce ethylenediaminetetraacetate (EDTA)-capped NaGdF:10Ce/18Tb nanoparticles (NPs) as a highly sensitive nanoscintillator, which meets all of the abovementioned challenges.
View Article and Find Full Text PDFPerovskite materials have demonstrated superior performance in many aspects of optoelectronic applications including X-ray scintillation, photovoltaic, photodetection, and so on. In this work, we demonstrate a self-powered flexible all-perovskite X-ray detector with high sensitivity and fast response, which can be realized by integrating CsPbBr perovskite nanocrystals (PNCs) as the X-ray scintillator with a CHNHPbI perovskite photodetector. The PNCs scintillator exhibits ultra-fast light decay of 2.
View Article and Find Full Text PDF