Hypoxia is a key hallmark of solid tumors and can cause resistance to various treatments such as photodynamics and immunotherapy. Microenvironment-responsive gene editing provides a powerful tool to overcome hypoxia resistance and remodel hypoxic microenvironments for enhanced tumor therapy. Here, a light-enhanced hypoxia-responsive multifunctional nanocarrier is developed to perform spatiotemporal specific dual gene editing for enhanced photodynamic and immunotherapy in breast cancer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2023
CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is a progressive chronic interstitial lung disease with limited therapeutic options. Cuproptosis is a recently proposed novel form of programmed cell death, which has been strongly implicated in the development of various human diseases. However, the prognostic and therapeutic value of cuproptosis-related genes (CRGs) in IPF remains to be elucidated.
View Article and Find Full Text PDFMultidrug resistance in cancer stem cells (CSCs) is a major barrier to chemotherapy; hence, developing CSC-specific targeted nanocarriers for efficient drug delivery is critical. In this study, monodisperse hollow-structured MnO (H-MnO) with a mesoporous shell was created for efficient targeted drug delivery. An effective therapeutic compound isoliquiritigenin (ISL) was confirmed to inhibit the lung cancer stem-cell phenotype by natural compound screening based on integrated microfluidic devices.
View Article and Find Full Text PDFCRISPR, as an emerging gene-editing technology, has been widely used in multidisciplinary fields, including genetic diseases and some cancers. However, it remains a challenge to efficiently deliver CRISPR for safe and efficient genome editing. Currently, biomimetic materials have become an attractive delivery strategy for CRISPR-mediated genome editing due to their low immunogenicity and application safety.
View Article and Find Full Text PDFDysregulated endocrine hormones (EHs) contribute to tumorigenesis, but how EHs affect the tumor immune microenvironment (TIM) and the immunotherapy of non-small cell lung cancer (NSCLC) is still unclear. Here, endogenous ouabain (EO), an adrenergic hormone, is elevated in patients with NSCLC and closely related to tumor pathological stage, metastasis, and survival. EO promotes the suppression of TIM in vivo by modulating the expression of immune checkpoint proteins, in which programmed cell death protein ligand 1 (PD-L1) plays a major role.
View Article and Find Full Text PDFMicromachines (Basel)
October 2022
Axisymmetric resonators are key elements of Coriolis vibratory gyroscopes (CVGs). The performance of a CVG is closely related to the stiffness and damping symmetry of its resonator. The stiffness symmetry of a resonator can be effectively improved by electrostatic tuning or mechanical trimming, both of which need an accurate knowledge of the azimuth angles of the two stiffness axes of the resonator.
View Article and Find Full Text PDFA cylindrical resonator gyroscope is a kind of Coriolis gyroscope, which measures angular velocity or angle via processing of the standing wave. The symmetry of a cylindrical resonator is destroyed by different degrees of geometric nonuniformity and structural damage in the machining process. The uneven mass distribution caused by the asymmetry of the resonator can be expressed in the form of a Fourier series.
View Article and Find Full Text PDFOptically pumped nuclear magnetic resonance (NMR) gyroscope has been widely concerned as a future gyroscope with great development potential. In this study, the Rb-Xe coupling effect in this gyroscope between the alkali metal magnetometer and the noble gas NMR is investigated. The theoretical formulae about this effect are obtained based on Bloch equation and demonstrated by experiments.
View Article and Find Full Text PDFWe have presented and demonstrated a customizable trajectory of a trapped particle in the Quadruple-beam optical trap. The orbital motion of the trapped microsphere was realized by modulating the trapping power. The motion trajectories could be designed by adjusting the modulation frequency, amplitude, and phase.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) continue to wreak havoc across the globe. Higher transmissibility and immunologic resistance of VOCs bring unprecedented challenges to epidemic extinguishment. Here we describe a monoclonal antibody, 2G1, that neutralizes all current VOCs and has surprising tolerance to mutations adjacent to or within its interaction epitope.
View Article and Find Full Text PDFPhotothermal therapy (PTT) is a promising strategy for the treatment of advanced malignant neoplasm. However, the anti-tumor efficacy by PTT alone is insufficient to control tumor growth and metastasis. Here, we report a multifunctional nanotherapeutic system exerting a combined PTT and immunotherapy to synergistically enhance the therapeutic effect on melanoma.
View Article and Find Full Text PDFThe feedback control to optical tweezers is an obvious approach to improve the optical confinement. However, the electronic-based feedback controlling system in optical tweezers usually consists of complex software and hardware, and its performance is limited by the inevitable noise and time-delay from detecting and controlling devices. Here, we present and demonstrate the dual-beam intracavity optical tweezers enabling all-optical independent radial and axial self-feedback control of the trapped particle's radial and axial motions.
View Article and Find Full Text PDFFor the axisymmetric shell resonator gyroscopes, the quality factor (Q factor) of the resonator is one of the core parameters limiting their performances. Surface loss is one of the dominating losses, which is related to the subsurface damage (SSD) that is influenced by the grinding parameters. This paper experimentally studies the surface roughness and Q factor variation of six resonators ground by three different grinding speeds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
Near-infrared (NIR)-light-triggered photothermal therapy (PTT) is usually associated with undesirable damage to healthy organs nearby due to the high temperatures (>50 °C) available for tumor ablation. Low-temperature PTT would therefore have tremendous value for clinical application. Here, we construct a hypoxia-responsive gold nanorods (AuNRs)-based nanocomposite of CRISPR-Cas9 for mild-photothermal therapy via tumor-targeted gene editing.
View Article and Find Full Text PDFThe cylindrical resonator gyroscope (CRG) is a type of Coriolis vibratory gyroscope which measures the angular velocity or angle through the precession of the elastic wave of the cylindrical resonator. The cylindrical fused silica resonator is an essential component of the CRG, the symmetry of which determines the bias drift and vibration stability of the gyroscope. The manufacturing errors breaking the symmetry of the resonator are usually described by Fourier series, and most studies are only focusing on analyzing and reducing the fourth harmonic error, the main error source of bias drift.
View Article and Find Full Text PDFSingle beam intracavity optical tweezers characterizes a novel optical trapping scheme where the laser operation is nonlinearly coupled to the motion of the trapped particle. Here, we first present and establish a physical model from a completely new perspective to describe this coupling mechanism, using transfer matrices to calculate the loss of the free-space optical path and then extracting the scattering loss that caused by the 3D motions of the particle. Based on this model, we discuss the equilibrium position in the single beam intracavity optical tweezers.
View Article and Find Full Text PDFThe cylindrical resonator is the core component of cylindrical resonator gyroscopes (CRGs). The quality factor (Q factor) of the resonator is one crucial parameter that determines the performance of the gyroscope. In this paper, the finite element method is used to theoretically investigate the influence of the thermoelastic dissipation (TED) of the cylindrical resonator.
View Article and Find Full Text PDFThe formation of an immunosuppressive microenvironment and up-regulation of PD-L1 protein are the main causes of tumor immune escape. Previous reports suggest that Angiotensin II (Ang II) can modulate the immune status of tumor microenvironment in non-small cell lung cancer (NSCLC), but the underlying mechanism remains not fully understood. Here we demonstrated that AngII treatment causes the reduction of intratumoral infiltrating CD4 T lymphocytes in tumor-bearing mice, increases the accumulation of immunosuppressive granulocytes and TAMs in tumor tissue, and upregulates the expression levels of immunosuppressive marker genes.
View Article and Find Full Text PDFThe fused silica cylindrical resonator is a type of axisymmetric resonator that can be used for Coriolis vibratory gyroscopes. Although the resonant frequency, frequency mismatch, and Q factor are natural properties of the resonator, they can change with temperature. Therefore, the temperature drift severely limits the detection accuracy and bias stability of the gyroscope.
View Article and Find Full Text PDFThe Coriolis Vibratory Gyroscopes are a type of sensors that measure angular velocities through the Coriolis effect. The resonator is the critical component of the CVGs, the vibrational characteristics of which, including the resonant frequency, frequency mismatch, Q factor, and Q factor asymmetry, have a great influence on the performance of CVG. The frequency mismatch and Q factor of the resonator, in particular, directly determine the precision and drift characteristics of the gyroscope.
View Article and Find Full Text PDFThe luminescence properties of BaAlSiO:Eu and BaAlSiO:Eu,Tm phosphors are presented. After being excited by a light source, BaAlSiO:Eu,Tm phosphors emit intense yellow long persistent luminescence covering the region from 450 to 700 nm, which can last about 8 h. Thermoluminescence curves were demonstrated to analyze the trapping nature of persistent luminescence.
View Article and Find Full Text PDFThe cylindrical resonator gyroscope (CRG) is a kind of solid-state gyroscope with a wide application market. The cylindrical resonator is the key component of CRG, whose quality factor and symmetry will directly affect the performance of the gyroscope. Due to the material properties and fabrication limitations, the actual resonator always has some defects.
View Article and Find Full Text PDFBackground And Purpose: In non-small-cell lung carcinoma (NSCLC) patients, the L858R/T790M mutation of the epithelial growth factor receptor (EGFR) is a major cause of acquired resistance to EGFR-TKIs treatment that limits their therapeutic efficacy. Identification of drugs that can preferentially kill the NSCLC harbouring L858R/T790M mutation is therefore critical. Here, we have evaluated the effects of ursolic acid, an active component isolated from herbal sources, on erlotinib-resistant H1975 cells that harbour the L858R/T790M mutation.
View Article and Find Full Text PDF