Ethnopharmacological Relevance: Acorus tatarinowii Rhizoma, a traditional Chinese medicine known for open the orifices and transform phlegm, is used in the treatment of brain disorders. The essential oil of Acorus tatarinowii Rhizoma (EOAT) has demonstrated neuroprotective properties clinically. However, research into its effect on Olfactory Dysfunction (OD) remains limited.
View Article and Find Full Text PDFBackground: Telemedicine has emerged as a novel healthcare service model that plays a vital role in addressing the unequal distribution of medical resources. Telemedicine has recently gained significant traction in economically prosperous cities such as Beijing, Shanghai, and Guangzhou in China. However, Xinyang City in Henan Province is an economically less developed city, and telemedicine is still in its early stages.
View Article and Find Full Text PDFThe accumulation of atrazine in soils can create environmental challenges, potentially posing risks to human health. Superabsorbent hydrogel (SH)-based formulations offer an eco-friendly approach to accelerate herbicide degradation. However, the impact of SHs on soil microbial community structure, and thus on the fate of atrazine, remains uncertain.
View Article and Find Full Text PDFBackground: With the popularity of the internet, short videos have become an indispensable tool to obtain health information. However, avoiding health disinformation owing to the openness of the Internet is difficult for users. Disinformation may endanger the health and lives of users.
View Article and Find Full Text PDFPurpose: Idiopathic pulmonary fibrosis (IPF), a chronic and progressively worsening condition characterized by interstitial lung inflammation and fibrosis of unknown etiology, has a grim prognosis. The treatment options for IPF are limited and new therapeutic strategies are urgently needed. Dietary restriction can improve various inflammatory diseases, but its therapeutic effect on bleomycin (BLM)-induced pulmonary fibrosis mouse model remains unclear.
View Article and Find Full Text PDFBackground: Surface-enhanced Raman scattering (SERS) has gained widespread use in molecule-level detection benefiting from its high sensitivity, nondestructive data acquisition, and capacity for providing molecular fingerprint information. However, the strong adhesion of target molecules to the substrate (known as the "memory effect") inherently hinders the reusability of SERS substrates. Research has shown that self-cleaning SERS substrates based on versatile semiconductor materials with SERS enhancement capabilities and solar photocatalytic properties offer an effective platform for the sensitive detection and degradation of harmful molecules.
View Article and Find Full Text PDFThe Schottky barrier between a metal and a semiconductor plays an important role in determining the transport efficiency of carriers and improving the performance of devices. In this work, we systematically studied the structure and electronic properties of heterostructures of blue phosphorene (BP) in contact with MoB based on density functional theory. The semiconductor properties of BP are destroyed owing to strong interaction with bare MoB.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is a common microvascular complication that causes visual impairment or loss. Aquaporin 4 (AQP4) is a regulatory protein involved in water transport and metabolism. In previous studies, we found that AQP4 is related to hypoxia injury in Muller cells.
View Article and Find Full Text PDFObjective: To evaluate the effects of DEAR weight management in overweight patients undergoing fertility-sparing treatment for endometrial cancer or atypical hyperplasia.
Methods: Women with endometrial cancer or atypical hyperplasia who received fertility-sparing treatment and had a body mass index of >25 kg/m were randomly allocated to the DEAR (DEAR weight management) and control (self weight management) groups. Body morphology and composition, glycolipid metabolism, and tumor outcomes were assessed in both groups before and at 3 and 6 months after intervention.
This study prepared a novel, portable and cost-effective microfluidic paper-based electrochemical analysis device (μ-PAD) using black phosphorus nanosheets@carboxylated multi-walled carbon nanotubes (BPNSs@MWCNTs-COOH) nanocomposites for β-lactoglobulin (β-LG) detection. At the appreciate ratio, the synthesized BPNSs@MWCNTs-COOH was demonstrated to not only serve as a high-quality substrate for the specific aptamer immobilization, but also improve the electron transfer capability of the sensing interface. The μ-PADs, utilizing BPNSs@MWCNTs-COOH and aptamer recognition, exhibited a wider detection range (10-1000 ng mL) and lower detection limit (LOD: 0.
View Article and Find Full Text PDFThis study successfully encapsulated the Ag-doped Au nanoclusters (Ag/AuNCs) within the ZIF-8 framework to construct a novel Ag/AuNCs@ZIF-8 ratiometric fluorescent probe for the antibiotic doxycycline (DOX) detection. The incorporation of Ag contributed to the fluorescence enhancement of the nanoclusters through the "silver effect", consequently improving the stability of the developed bimetallic Ag/AuNCs. Furthermore, the encapsulation of bimetallic Ag/AuNCs within the ZIF-8 framework restricted their intramolecular vibrations, resulting in further amplification of fluorescence intensity at 595 nm.
View Article and Find Full Text PDFIn this study, carbon dots (CDs)-encapsulated luminescent metal-organic frameworks@surface molecularly imprinted polymer (CDs@MOF@SMIP) was facilely prepared and applied as fluorescent probe for specific identification and sensitive detection of chloramphenicol (CAP) in food. Fluorescent CDs, serving as signal tags, were encapsulated within metal-organic backbones (ZIF-8), yielding luminescent MOF materials (CDs@ZIF-8). The synthesized CDs, CDs@ZIF-8 and CDs@ZIF-8@SMIP were investigated by morphological and structural characterizations (UV-Vis, XRD, FT-IR, BET, TEM).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2024
A novel Schiff-base fluorescent probe, 4-(N-(2- hydroxyl-1-naphthalymethylimino)-ethylamino) -7-nitro-1,2,3-benzoxadiazole (HENB) was synthesized and utilized for spectral sensing of Fe ions at neutral pH. The binding of Fe to HENB in CHOH-HEPES buffer (1:1 v/ v, 25 mM, pH 7.2) resulted in a pronounced emission enhancement at 530 nm, which is possibly due to the inhibition of photo-induced electron transfer (PET) process as well as the chelation enhanced fluorescence (CHEF) effect.
View Article and Find Full Text PDFChlorogenic acid (CGA) is an active ingredient in honeysuckle with a broad-spectrum of antibacterial activity, suppressing tumor growth and other pharmacological effects. However, it is susceptible to damage during traditional extraction and separation processes. Therefore, developing selective and efficient extraction methods of CGA is essential.
View Article and Find Full Text PDFTrace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products.
View Article and Find Full Text PDFThis paper developed a portable microfluidic paper-based analysis device (μ-PAD) combined with the electrochemical technique for efficient and sensitive detection of peanut allergen Ara h1. The proposed μ-PAD works based on the variation of differential pulse voltammetry (DPV) response current induced by peanut allergen Ara h1. Black phosphorus (BP)-Au nanocomposites were introduced both to improve the electron transfer rate at the electrode interface for signal amplification, and to immobilize the specific Ara h1 aptamers through Au-S bonding to recognize the target in food matrices.
View Article and Find Full Text PDFRapid, portable, and sensitive detection of tetracycline (TC) is crucial for the environment and human health. In this study, we developed carbon dots (CDs)-based fluorescent molecularly imprinted photonic crystal hydrogel (FMIPH) strips for TC detection in animal-derived foods. CDs emit fluorescent signals, and molecularly imprinted polymers provide specific recognition sites for TC.
View Article and Find Full Text PDFRapid, sensitive, specific and stable detection of mycotoxin in food remains an extremely crucial issue. Herein, a magnetic-fluorescent immunosensing platform for the detection of zearalenone (ZEN) was proposed. The platform utilized Au nanoparticles (AuNPs) heterogeneous fluorescent metal-organic framework (MIL-53(Al)@AuNPs) labeled with ZEN-bovine serum albumin (ZEN-BSA) as signal probe and ZEN mono-antibodies coupled with magnetic NPs (MNPs-mAbs) as capture probe.
View Article and Find Full Text PDFBackground: Cardiopulmonary bypass (CPB) is frequently employed for cardiac surgery, and selecting a suitable priming fluid is a prerequisite for CPB. Currently, the commonly used priming fluids in clinics are classified as crystalloids and colloids, including balanced crystalloids, albumin, dextran, gelatin and hydroxyethyl starch (HES). This network meta-analysis compared the effects of eight fluids used during CPB in adults to determine optimal priming fluid during CPB surgery.
View Article and Find Full Text PDFA rapid and selective sorbent for the enrichment of dibutyl phthalate (DBP) from water and Chinese Baijiu samples was established using magnetic surface molecularly imprinted polymers (MSMIPs) combined with gas chromatography-mass spectrometer (GC-MS). The MSMIPs were synthesized using a magnetic nanosphere material with silica layer, increasing the polymer surface area as a carrier. Compared with the traditional methods, the addition of magnetic microspheres simplified the process of food substrate purification and significantly shortened the pre-concentration time.
View Article and Find Full Text PDFEnsuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Solar energy-driven reduction of CO into fuels with HO as a sacrificial agent is a challenging but desirable subject in photosynthesis. Covalent organic frameworks (COFs) are considered promising candidates for this subject because of their designable structures and functions. The coordination of transition metal ions into COFs is a feasible way to boost the photocatalytic activity.
View Article and Find Full Text PDFIn this study, a ZrO/nitrogen-doped three-dimensional porous carbon (ZrO/N-3DPC) nanocomposite was manufactured to fabricate an effective electrochemical sensor for the detection of ultra-trace mercury ion (Hg). The synthesized N-3DPC had an open pore structure, large specific surface area and enough continuous mass transfer channels, which can facilitate the diffusion and transmission of electrons and ions at the sensing interface, providing an effective adhesion platform for electrochemical deposition of ZrO nanoparticles. Benefiting from the synergistic effect of ZrO and N-3DPC, the developed electrochemical sensor had good adsorption and catalytic performance for Hg with a wider linear range of 0.
View Article and Find Full Text PDF