Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures.
View Article and Find Full Text PDFRice is the staple food for half of the world's population but also has the largest water footprint among cereal crops. Alternate wetting and drying (AWD) is a promising irrigation strategy to improve paddy rice's water productivity-defined as the ratio of rice yield to irrigation water use. However, its global adoption has been limited due to concerns about potential yield losses and uncertainties regarding water productivity improvements.
View Article and Find Full Text PDFPlants frequently evade extreme environmental stress by initiating early flowering, yet the underlying mechanisms remain incompletely understood. Here, through extensive mutant screening, we identify a vegetative growth to reproductive growth transition factor (vrf1) mutant, which exhibits a deficiency in drought escape. Alternative splicing of VRF1 generates four isoforms, of which two encode functional proteins, VRF1-AS1 and VRF1-AS3.
View Article and Find Full Text PDFCardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.
View Article and Find Full Text PDFBiochar exhibits numerous advantages in enhancing the soil environment despite a few limitations due to its lower surface energy. Nanomodified biochar combines the advantages of biochar and nanoscale materials. However, its effects on water infiltration and N leaching in a clayey soil remain unclear.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
December 2023
The middle and lower reaches of the Yangtze River is one of main grain production areas in China, which is of great significance to food security. Understanding the carbon footprint of major grain crop production is helpful to develop high-yield and low-carbon agriculture. Based on the data of yield, sown area and farmland production input of main grain crops (rice, wheat and maize) in six provinces (Jiangsu, Anhui, Jiangxi, Hubei, Hunan, and Zhejiang) in the middle and lower reaches of the Yangtze River from 2011 to 2020, we estimated carbon footprint in the production of the three grain crops.
View Article and Find Full Text PDFPolyamines and ethylene are key regulators of the growth and development, quality formation, and stress response of cereal crops such as rice. However, it remains unclear whether the application of these regulators could improve the nutritional quality via increasing amino acids in rice grains. This study examined the role of exogenous polyamines and ethylene in regulating amino acid levels in the milled rice of earlier-flowered superior grain (SG) and later-flowered inferior grain (IG).
View Article and Find Full Text PDFSpikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice.
View Article and Find Full Text PDFSalt is harmful to crop production. Therefore, it is important to understand the mechanism of salt tolerance in rice. genes have various functions, including regulating salt tolerance and other types of stress and nitrogen use efficiency.
View Article and Find Full Text PDFSignificant advancements have been made in understanding the genetic regulation of nitrogen use efficiency (NUE) and identifying crucial NUE genes in rice. However, the development of rice genotypes that simultaneously exhibit high yield and NUE has lagged behind these theoretical advancements. The grain yield, NUE, and greenhouse gas (GHG) emissions of newly-bred rice genotypes under reduced nitrogen application remain largely unknown.
View Article and Find Full Text PDFStraw returning plays an essential role in crop yields and the sustainable development of agriculture. However, the effects and mechanisms of nitrogen (N) fertilizer management on grain yield, quality and aroma substance 2-acetyl-1-pyrroline (2-AP) content under wheat straw returning are still unclear. In this field experiment, two rice cultivars were used as materials, wheat straw non-returning (NS) and wheat straw full returning (WS) were designed coupled with two N application ratios, namely basal fertilizer: tiller fertilizer: panicle fertilizer =5:1:4 (local farmers' fertilizer practice, LFP) and 7:1:2 (increasing basal fertilizer rate, IBF) under the total N application rate of 270 kg ha.
View Article and Find Full Text PDFThe mobilization and translocation of carbohydrates and mineral nutrients from vegetative plant parts to grains are pivotal for grain filling, often involving a whole plant senescence process. Loss of greenness is a hallmark of leaf senescence. However, the relationship between crop yield and senescence has been controversial for many years.
View Article and Find Full Text PDFThis study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously.
View Article and Find Full Text PDFDirect cell reprogramming represents a promising new myocardial regeneration strategy involving in situ transdifferentiation of cardiac fibroblasts into induced cardiomyocytes. Adult human cells are relatively resistant to reprogramming, however, likely because of epigenetic restraints on reprogramming gene activation. We hypothesized that modulation of the epigenetic regulator gene p63 could improve the efficiency of human cell cardio-differentiation.
View Article and Find Full Text PDFRice is one of the most important food crops in the world, and amino acids in rice grains are major nutrition sources for the people in countries where rice is the staple food. Phytohormones and plant growth regulators play vital roles in regulating the biosynthesis of amino acids in plants. This paper reviewed the content and compositions of amino acids and their distribution in different parts of ripe rice grains, and the biosynthesis and metabolism of amino acids and their regulation by polyamines (PAs) and phytohormones in filling grains, with a focus on the roles of higher PAs (spermidine and spermine), ethylene, and brassinosteroids (BRs) in this regulation.
View Article and Find Full Text PDFPoor grain filling of inferior spikelets is becoming a severe problem in some super rice varieties with large panicles. Moderate soil drying (MD) after pollination has been proven to be a practical strategy to promote grain filling. However, the molecular mechanisms underlying this phenomenon remain largely unexplored.
View Article and Find Full Text PDFBackground The conversion of fibroblasts into induced cardiomyocytes may regenerate myocardial tissue from cardiac scar through in situ cell transdifferentiation. The efficiency transdifferentiation is low, especially for human cells. We explored the leveraging of Hippo pathway intermediates to enhance induced cardiomyocyte generation.
View Article and Find Full Text PDFFibroblast reprogramming offers the potential for myocardial regeneration via in situ cell transdifferentiation. We explored a novel strategy leveraging endothelial cell plasticity to enhance reprogramming efficiency. Rat cardiac endothelial cells and fibroblasts were treated with Gata4, Mef2c, and Tbx5 (GMT) to assess the cardio-differentiation potential of these cells.
View Article and Find Full Text PDFOngoing increases in atmospheric carbon dioxide (CO) are expected to stimulate biomass and yield of plants possessing the C3 photosynthetic pathway; however, the extent of stimulation is likely to vary both intra- and inter-species specifically. Meta-analytic approaches can be applied to decrease variation and uncertainty by delineating and characterizing variation, allowing results to be used in modeling plant responses to elevated [CO]. However, the use of meta-analysis in this effort could be limited by missing measures of variance, including standard deviations (SDs) of the compiled dataset.
View Article and Find Full Text PDFBackground: Applying organic fertilizer coupled with chemical fertilizer has been widely adopted to improve crop productivity and quality and develop sustainable agriculture. However, little information is available about the effects of organic fertilizer on the grain quality of rice (Oryza sativa L.), especially nutritional quality and starch quality.
View Article and Find Full Text PDFUsing photothermosensitive genic male sterile (PTSGMS) rice ( L.) lines to produce hybrids can obtain great heterosis. However, PTSGMS rice lines exhibit low stigma vitality when high-temperature (HT) stress happens during anthesis.
View Article and Find Full Text PDFEvaluating the impact of climate change factors, especially temperature and carbon dioxide (CO), on rice yield is essential to ensure future food security. Because of the wide biogeographical distribution of rice, such evaluations are conducted exclusively through modeling efforts. However, geographical forecasts could, potentially, be improved by the inclusion of field-based data on projected increases in temperature and CO concentration from a given rice-growing region.
View Article and Find Full Text PDFIn rice (), a specific temporary source organ, the stem, is important for grain filling, and moderate soil drying (MD) enhanced carbon reserve flow from stems to increase grain yield. The dynamics and biological relevance of DNA methylation in carbon reserve remobilization during grain filling are unknown. Here, we generated whole-genome single-base resolution maps of the DNA methylome in the stem.
View Article and Find Full Text PDF