Publications by authors named "Yang E Li"

While a rich set of putative cis-regulatory sequences involved in mouse fetal development have been annotated recently on the basis of chromatin accessibility and histone modification patterns, delineating their role in developmentally regulated gene expression continues to be challenging. To fill this gap, here we mapped chromatin contacts between gene promoters and distal sequences across the genome in seven mouse fetal tissues and across six developmental stages of the forebrain. We identified 248,620 long-range chromatin interactions centered at 14,138 protein-coding genes and characterized their tissue-to-tissue variations and developmental dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Despite extensive research on genomic changes in glioblastoma, the survival rate remains under 5% after five years.
  • This study aims to broaden the understanding of high-grade glioma by combining various biological analyses (proteomics, metabolomics, etc.) to identify complex regulatory mechanisms involved in tumor growth and progression.
  • Results from analysis of 228 tumors indicate significant variability in early-stage changes, but they converge on common outcomes affecting protein interactions and modifications, highlighting PTPN11's crucial role in high-grade gliomas.
View Article and Find Full Text PDF

The integrity of the plasma membrane is critical to cell function and survival. Cells have developed multiple mechanisms to repair damaged plasma membranes. A key process during plasma membrane repair is to limit the size of the damage, which is facilitated by the presence of tetraspanin-enriched rings surrounding damage sites.

View Article and Find Full Text PDF

Divergence of cis-regulatory elements drives species-specific traits, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes.

View Article and Find Full Text PDF

Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections.

View Article and Find Full Text PDF

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq) technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain.

View Article and Find Full Text PDF

Delineating the gene-regulatory programs underlying complex cell types is fundamental for understanding brain function in health and disease. Here, we comprehensively examined human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in 517 thousand cells (399 thousand neurons and 118 thousand non-neurons) from 46 regions of three adult male brains. We identified 188 cell types and characterized their molecular signatures.

View Article and Find Full Text PDF

Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.

View Article and Find Full Text PDF

We previously reported Paired-Tag, a combinatorial indexing-based method that can simultaneously map histone modifications and gene expression at single-cell resolution at scale. However, the lengthy procedure of Paired-Tag has hindered its general adoption in the community. To address this bottleneck, we developed a droplet-based Paired-Tag protocol that is faster and more accessible than the previous method.

View Article and Find Full Text PDF

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS).

View Article and Find Full Text PDF

In 2021, the World Health Organization reclassified glioblastoma, the most common form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratumoral heterogeneity is a key contributor to therapeutic failure. To better define this heterogeneity, genome-wide chromatin accessibility and transcription profiles of clinical samples of glioblastomas and G4 IDHm astrocytomas were analyzed at single-cell resolution.

View Article and Find Full Text PDF

Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain.

View Article and Find Full Text PDF

Sequence divergence of regulatory elements drives species-specific traits, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains to be elucidated. We investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset, and mouse with single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome, and chromosomal conformation profiles from a total of over 180,000 cells. For each modality, we determined species-specific, divergent, and conserved gene expression and epigenetic features at multiple levels.

View Article and Find Full Text PDF

Non-coding variation in complex human disease has been well established by genome-wide association studies, and is thought to involve regulatory elements, such as enhancers, whose variation affects the expression of the gene responsible for the disease. The regulatory elements often lie far from the gene they regulate, or within introns of genes differing from the regulated gene, making it difficult to identify the gene whose function is affected by a given enhancer variation. Enhancers are connected to their target gene promoters via long-range physical interactions (loops).

View Article and Find Full Text PDF

Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for ∼1.

View Article and Find Full Text PDF

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures. Recent surveys of mouse and human brains with single-cell transcriptomics and high-throughput imaging technologies have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types.

View Article and Find Full Text PDF

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion.

View Article and Find Full Text PDF

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species.

View Article and Find Full Text PDF

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets.

View Article and Find Full Text PDF

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects.

View Article and Find Full Text PDF

TMEM41B and VMP1, two endoplasmic reticulum (ER)-resident transmembrane proteins, play important roles in regulating the formation of lipid droplets (LDs), autophagy initiation, and viral infection. However, the biochemical functions of TMEM41B and VMP1 are unclear. A lipids distribution screen suggested TMEM41B and VMP1 are critical to the normal distribution of cholesterol and phosphatidylserine.

View Article and Find Full Text PDF

Misregulated gene expression in human hearts can result in cardiovascular diseases that are leading causes of mortality worldwide. However, the limited information on the genomic location of candidate cis-regulatory elements (cCREs) such as enhancers and promoters in distinct cardiac cell types has restricted the understanding of these diseases. Here, we defined >287,000 cCREs in the four chambers of the human heart at single-cell resolution, which revealed cCREs and candidate transcription factors associated with cardiac cell types in a region-dependent manner and during heart failure.

View Article and Find Full Text PDF

TMEM41B and VMP1 are integral membrane proteins of the endoplasmic reticulum (ER) and regulate the formation of autophagosomes, lipid droplets (LDs), and lipoproteins. Recently, TMEM41B was identified as a crucial host factor for infection by all coronaviruses and flaviviruses. The molecular function of TMEM41B and VMP1, which belong to a large evolutionarily conserved family, remains elusive.

View Article and Find Full Text PDF