Publications by authors named "Yang Do Choi"

Plastid-encoded RNA polymerase (PEP) plays a pivotal role in chloroplast development by governing the transcription of chloroplast genes, and PEP-associated proteins (PAPs) modulate PEP transcriptional activity. Therefore, PAPs provide an intriguing target for those efforts to improve yield, by enhancing chloroplast development. In this study, we identified the rice (Oryza sativa) OsPAP3 gene and characterized its function in chloroplast development.

View Article and Find Full Text PDF

The root endodermis forms a selective barrier that prevents the free diffusion of solutes into the vasculature; to make this barrier, endodermal cells deposit hydrophobic compounds in their cell walls, forming the Casparian strip. Here, we showed that, in contrast to vascular and epidermal root cells, endodermal root cells do not divide alongside the root apical meristem in Arabidopsis thaliana. Auxin treatment induced division of endodermal cells in wild-type plants, but not in the auxin signaling mutant auxin resistant3-1.

View Article and Find Full Text PDF

Roots anchor plants and take up water and nutrients from the soil; therefore, root development strongly affects plant growth and productivity. Moreover, increasing evidence indicates that root development is deeply involved in plant tolerance to abiotic stresses such as drought and salinity. These findings suggest that modulating root growth and development provides a potentially useful approach to improve plant abiotic stress tolerance.

View Article and Find Full Text PDF

To date, extensive studies have identified many classes of hormones in plants and revealed the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions largely overlap in many aspects of plant development and environmental responses, suggesting that studying the crosstalk among plant hormones is key to understanding hormonal responses in plants. The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic and abiotic stresses.

View Article and Find Full Text PDF

Background: Plastid-encoded RNA polymerase (PEP) plays an essential role in chloroplast development by governing the expression of genes involved in photosynthesis. At least 12 PEP-associated proteins (PAPs), including FSD3/PAP4, regulate PEP activity and chloroplast development by modulating formation of the PEP complex.

Results: In this study, we identified FSD3S, a splicing variant of FSD3; the FSD3 and FSD3S transcripts encode proteins with identical N-termini, but different C-termini.

View Article and Find Full Text PDF

Jasmonic acid (JA) modulates plant development, growth, and responses to stress. Previously, we showed that in , JA promotes the formation of extra xylem in roots, and mutant plants unable to express () and formed extra xylem in the absence of exogenous JA. Those results suggested that JA modulates root xylem development by controlling PIN-mediated polar auxin transport.

View Article and Find Full Text PDF

The jasmonic acid (JA) and gibberellic acid (GA) signaling pathways interact to coordinate stress responses and developmental processes. This coordination affects plant growth and yield, and is mediated by interactions between the repressors of each pathway, the JASMONATE ZIM-DOMAIN PROTEIN (JAZ) and DELLA proteins. In this study we attempted to identify rice () JAZs that interact with rice DELLAs such as SLENDER RICE 1 (SLR1).

View Article and Find Full Text PDF

Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms.

View Article and Find Full Text PDF

Plants have evolved to have sophisticated adaptation mechanisms to cope with drought stress by reprograming transcriptional networks through drought responsive transcription factors. NAM, ATAF1-2, and CUC2 (NAC) transcription factors are known to be associated with various developmental processes and stress tolerance. In this study, we functionally characterized the rice drought responsive transcription factor .

View Article and Find Full Text PDF

Drought stress provokes jasmonic acid (JA) signaling, which mediates plant stress responses; moreover, growing numbers of studies suggest that JA is involved in the modulation of root development under drought stress. Recently, we showed that JA promotes differentiation of xylem from procambial cells in Arabidopsis roots. Further molecular and genetic approaches revealed that the effect of JA on xylem development is caused by suppression of cytokinin responses, suggesting that JA antagonistically interacts with cytokinin to modulate xylem development.

View Article and Find Full Text PDF

Background: Plant stress responses and mechanisms determining tolerance are controlled by diverse sets of genes. Transcription factors (TFs) have been implicated in conferring drought tolerance under drought stress conditions, and the identification of their target genes can elucidate molecular regulatory networks that orchestrate tolerance mechanisms.

Results: We generated transgenic rice plants overexpressing the 4 rice TFs, OsNAC5, 6, 9, and 10, under the control of the root-specific RCc3 promoter.

View Article and Find Full Text PDF

Developmental flexibility under stress conditions largely relies on the interactions between hormones that mediate stress responses and developmental processes. In this study, we showed that the stress hormone jasmonic acid (JA) induces formation of extra xylem in the roots of wild-type Arabidopsis thaliana (Col-0). JA signaling mutants such as coronatine insensitive1-1 and jasmonate resistant1-1 did not form extra xylem in response to JA, but the JA biosynthesis mutant oxophytodienoate-reductase3 did form extra xylem.

View Article and Find Full Text PDF

Regulation of photosynthetic gene expression by plastid-encoded RNA polymerase (PEP) is essential for chloroplast development. The activity of PEP largely relies on at least 12 PEP-associated proteins (PAPs) encoded in the nuclear genome of plant cells. A recent model proposed that these PAPs regulate the establishment of the PEP complex through broad PAP-PEP or PAP-PAP interactions.

View Article and Find Full Text PDF

Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering.

View Article and Find Full Text PDF

Background: Plant transcriptome profiling has provided a tool for understanding the mechanisms by which plants respond to stress conditions. Analysis of genome-wide transcriptome will provides a useful dataset of drought responsive noncoding RNAs and their candidate target genes that may be involved in drought stress responses.

Results: Here RNA-seq analyses of leaves from drought stressed rice plants was performed, producing differential expression profiles of noncoding RNAs.

View Article and Find Full Text PDF

Plant responses to drought stress require the regulation of transcriptional networks via drought-responsive transcription factors, which mediate a range of morphological and physiological changes. AP2/ERF transcription factors are known to act as key regulators of drought resistance transcriptional networks; however, little is known about the associated molecular mechanisms that give rise to specific morphological and physiological adaptations. In this study, we functionally characterized the rice (Oryza sativa) drought-responsive AP2/ERF transcription factor OsERF71, which is expressed predominantly in the root meristem, pericycle, and endodermis.

View Article and Find Full Text PDF

The mechanisms of plant response and adaptation to drought stress require the regulation of transcriptional networks via the induction of drought-responsive transcription factors. Nuclear Factor Y (NF-Y) transcription factors have aroused interest in roles of plant drought stress responses. However, the molecular mechanism of the NF-Y-induced drought tolerance is not well understood.

View Article and Find Full Text PDF

Transgenic overexpression of the Arabidopsis gene for jasmonic acid carboxyl methyltransferase (AtJMT) is involved in regulating jasmonate-related plant responses. To examine its role in the compositional profile of soybean (Glycine max), we compared the seeds from field-grown plants that over-express AtJMT with those of the non-transgenic, wild-type (WT) counterpart. Our analysis of chemical compositions included proximates, amino acids, fatty acids, isoflavones, and antinutrients.

View Article and Find Full Text PDF

Auxin signaling is a fundamental part of many plant growth processes and stress responses and operates through Aux/IAA protein degradation and the transmission of the signal via auxin response factors (ARFs). A total of 31 Aux/IAA genes have been identified in rice (Oryza sativa), some of which are induced by drought stress. However, the mechanistic link between Aux/IAA expression and drought responses is not well understood.

View Article and Find Full Text PDF

We have characterized four novel constitutive promoters ARP1, H3F3, HSP and H2BF3 that are active in all tissues/stages of transgenic plants and stable over two homozygous generations. Gene promoters that are active and stable over several generations in transgenic plants are valuable tools for plant research and biotechnology. In this study, we characterized four putative constitutive promoters (ARP1, H3F3, HSP and H2BF3) in transgenic rice plants.

View Article and Find Full Text PDF

Genomic imprinting, an epigenetic process in mammals and flowering plants, refers to the differential expression of alleles of the same genes in a parent-of-origin-specific manner. In Arabidopsis, imprinting occurs primarily in the endosperm, which nourishes the developing embryo. Recent high-throughput sequencing analyses revealed that more than 200 loci are imprinted in Arabidopsis; however, only a few of these imprinted genes and their imprinting mechanisms have been examined in detail.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on hot pepper (Capsicum annuum), a widely cultivated spice, detailing its whole-genome sequencing and assembly, revealing it has a genome four times larger than tomato.
  • Researchers also analyzed two cultivated pepper varieties and a wild type (Capsicum chinense), uncovering key genetic elements influencing capsaicinoid (spicy compound) production.
  • The findings emphasize the role of gene expression changes and ripening processes that can enhance the nutritional and medicinal properties of hot peppers.
View Article and Find Full Text PDF

Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth.

View Article and Find Full Text PDF

Cross-talk between hormones is required for plant response to developmental cues and environmental stresses. This cross-talk is achieved through several regulators located in convergence point of distinct hormonal signaling. In plant defense responses, salicylic acid and jasmonic acid affect each other in antagonistic manner.

View Article and Find Full Text PDF

Jasmonates (JAs) are important regulators of plant biotic and abiotic stress responses and development. AtJMT in Arabidopsis thaliana and BcNTR1 in Brassica campestris encode jasmonic acid carboxyl methyltransferases, which catalyze methyl jasmonate (MeJA) biosynthesis and are involved in JA signaling. Their expression is induced by MeJA application.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnllm6vqq2a85ergi0jkcce2mk6vifmv4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once