CO hydrogenation to chemicals and fuels is a significant approach for achieving carbon neutrality. It is essential to rationally design the chemical structure and catalytic active sites towards the development of efficient catalysts. Here we show a Ce-CuZn catalyst with enriched Cu/Zn-O-Ce active sites fabricated through the atomic-level substitution of Cu and Zn into Ce-MOF precursor.
View Article and Find Full Text PDFIn confined mesoscopic spaces, the unraveling of a catalytic mechanism with complex mass transfer and adsorption processes such as reactant enrichment is a great challenge. In this study, a hollow nanoarchitecture of MnO-encapsulated Pt nanoparticles was designed as a nanoreactor to investigate the reactant enrichment in a mesoscopic hollow void. By employing advanced characterization techniques, we found that the reactant-enrichment behavior is derived from directional diffusion of the reactant driven through the local concentration gradient and this increased the amount of reactant.
View Article and Find Full Text PDFMimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles.
View Article and Find Full Text PDFSolid-state polymer electrolytes (SPEs) attract great interest in developing high-performance yet reliable solid-state batteries. However, understanding of the failure mechanism of the SPE and SPE-based solid-state batteries remains in its infancy, posing a great barrier to practical solid-state batteries. Herein, the high accumulation and clogging of "dead" lithium polysulfides (LiPS) on the interface between the cathode and SPE with intrinsic diffusion limitation is identified as a critical failure cause of SPE-based solid-state Li-S batteries.
View Article and Find Full Text PDFHollow nanostructures with fascinating properties have inspired numerous interests in broad research fields. Cell-mimicking complex hollow architectures with precise active components distributions are particularly important, while their synthesis remains highly challenging. Herein, a "top-down" chemical surgery strategy is introduced to engrave the 3-aminophenol formaldehyde resin (APF) spheres at nanoscale.
View Article and Find Full Text PDFSupported metal nanoclusters consisting of several dozen atoms are highly attractive for heterogeneous catalysis with unique catalytic properties. However, the metal nanocluster catalysts face the challenges of thermal sintering and consequent deactivation owing to the loss of metal surface areas particularly in the applications of high-temperature reactions. Here, we report that sulfur-a documented poison reagent for metal catalysts-when doped in a carbon matrix can stabilize ~1 nanometer metal nanoclusters (Pt, Ru, Rh, Os, and Ir) at high temperatures up to 700 °C.
View Article and Find Full Text PDFPrecisely regulating the electronic structures of metal active species is highly desirable for electrocatalysis. However, carbon with inert surface provide weak metal-support interaction, which is insufficient to modulate the electronic structures of metal nanoparticles. Herein, we propose a new method to control the electrocatalytic behavior of supported metal nanoparticles by dispersing single metal atoms on an O-doped graphene.
View Article and Find Full Text PDFFischer-Tropsch synthesis (FTS) is an effective route to produce olefins, gasoline, diesel, and oxygenates from syngas (CO + H ). However, it still remains a challenge for regulating the product distribution of FTS. Here, a series of Co/C sub-microreactors with precise designed nanoarchitectures are synthesized for selective syngas conversion.
View Article and Find Full Text PDFDeveloping low-cost non-precious metals as efficient catalysts for the reduction of toxic 4-nitrophenol (4-NP) to useful 4-aminophenol (4-AP) have received increasing attention in recent years. Herein, a novel and efficient Cu-based catalyst Cu/CuO@CN (carbon doped with nitrogen) was prepared via a facile method from pyrolysis of bi-ligand MOFs material Cu(BDC)(BPY) (BDC = p-Phthalic acid, BPY = 4,4'-bipyridyl) in Ar atmosphere. Characterization results revealed that N doping in carbon matrix favors the development of mesoporous structure, the formation of more defect sites in carbon matrix, better dispersion of Cu/CuO nano particles, and maintenance of Cu species in metallic Cu state (the active site), all of which contribute to a superior catalytic activity for 4-NP reduction with a pseudo-first-order rate constant as high as 0.
View Article and Find Full Text PDF