Publications by authors named "Yanfeng Wu"

The entheses are the sites where tendons or ligaments insert into osseous structures and play a crucial role in transmitting mechanical stress from muscles to bones. Under excessive mechanical loads, the entheses may sustain inflammation, leading to isolated enthesitis. However, the specific mechanisms through which enthesitis occurs have not yet been fully elucidated.

View Article and Find Full Text PDF

Macrophage polarization and energy metabolic reprogramming play pivotal roles in the onset and progression of inflammatory arthritis. Moreover, although previous studies have reported that the proviral integration of Moloney virus 2 (Pim2) kinase is involved in various cancers through the mediation of aerobic glycolysis in cancer cells, its role in inflammatory arthritis remains unclear. In this study, we demonstrated that multiple metabolic enzymes are activated upon Pim2 upregulation during M1 macrophage polarization.

View Article and Find Full Text PDF

Importance: The direct effect of consumption of salt substitutes on recurrent stroke and mortality among patients with stroke remains unclear.

Objective: To evaluate the effects of salt substitutes vs regular salt on the incidence of recurrent stroke and mortality among patients with stroke.

Design, Setting, And Participants: The Salt Substitute and Stroke Study (SSaSS), an open-label, cluster randomized clinical trial, was conducted in 600 northern Chinese villages (clusters).

View Article and Find Full Text PDF

The widespread use of human mesenchymal stem cells(hMSCs) is impeded by functional loss during prolonged expansion. Although multiple approaches have been attempted to preserve hMSCs stemness, a suitable culture system remains to be modified. The interaction between electrical signals and stem cells is expected to better maintain the function of stem cells.

View Article and Find Full Text PDF

Osteoporosis is characterized by decreased bone mass and accumulation of adipocytes in the bone marrow. The mechanism underlying the imbalance between osteoblastogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs) remains unclear. We found that ALG5 was significantly downregulated in BMSCs from osteoporotic specimens.

View Article and Find Full Text PDF

Immunometabolism is critical in the regulation of immunity and inflammation; however, the mechanism of preventing aberrant activation-induced immunopathology remains largely unclear. Here, we report that glyoxalase II (GLO2) in the glycolysis branching pathway is specifically downregulated by NF-κB signaling during innate immune activation via tristetraprolin (TTP)-mediated mRNA decay. As a result, its substrate S-D-lactoylglutathione (SLG) accumulates in the cytosol and directly induces D-lactyllysine modification of proteins.

View Article and Find Full Text PDF

Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models.

View Article and Find Full Text PDF

Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues.

View Article and Find Full Text PDF

Nitrogen oxides (NO) are crucial in tropospheric photochemical ozone (O) production and oxidation capacity. Currently, the widely used NO measurement technique is chemiluminescence (CL) (CL-NO), which tends to overestimate NO due to atmospheric oxidation products of NO (i.e.

View Article and Find Full Text PDF

Geographically isolated wetlands (GIWs) offer a diverse array of ecosystem services and contribute largely to landscape functions. Numerous studies have documented the substantial pressures on wetland ecosystems from both natural changes and human activities worldwide. However, the quantification of these impacts on GIWs remains scarce.

View Article and Find Full Text PDF

The SARS-CoV-2 Omicron variant is characterized by its high transmissibility, which has caused a worldwide epidemiological event. Yet, it turns ominous once the disease progression degenerates into severe pneumonia and sepsis, presenting a horrendous lethality. To elucidate the alveolar immune or inflammatory landscapes of Omicron critical-ill patients, we performed single-cell RNA-sequencing (scRNA-seq) of bronchoalveolar lavage fluid (BALF) from the patients with critical pneumonia caused by Omicron infection, and analyzed the correlation between the clinical severity scores and different immune cell subpopulations.

View Article and Find Full Text PDF
Article Synopsis
  • Iron deficiency can cause organ damage and has been linked to dysfunction in bone metabolism, though the exact mechanisms are still being researched.
  • A study identified the enzyme KDM4D as crucial for activating quiescent mesenchymal stem cells (MSCs), showing that iron deficiency reduces its activity, leading to increased suppression of a gene (PIK3R3).
  • Iron-deficient mice showed poor activation of MSCs and lower bone mass, indicating that adjusting the PI3K-Akt-Foxo1 pathway might help counteract bone loss caused by iron deficiency.
View Article and Find Full Text PDF

Nutrient proportion, light intensity, and temperature affect the succession of dominant phytoplankton species. Despite these insights, this transformation mechanism in highly turbid lakes remains a research gap, especially in response to climate change. To fill this gap, we investigated the mechanism by which multi-environmental factors influence the succession of dominant phytoplankton species in Lake Chagan.

View Article and Find Full Text PDF

Background: Based on data from the Global Burden of Disease study, the burden of cancer attributable to occupational risks between 1990 and 2019 was explored.

Methods: The estimated burden in different regions was compared in terms of the age-standardized death rates (ASDRs), age-standardized disability-adjusted life years (DALYs) rates, and corresponding estimated annual percentage changes (EAPCs). The comparative risk assessment framework was used to estimate the risk of death and DALYs attributable to occupational risk factors.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoclasts are specialized cells that break down bone and are formed from monocyte/macrophage progenitor cells; an imbalance in their production can lead to conditions like osteoporosis.
  • Long noncoding RNAs (lncRNAs) play a critical role in regulating gene expression and have been found to influence important biological processes, including osteoclast differentiation and osteoporosis.
  • The review discusses recent findings on lncRNAs, highlighting their potential for clinical applications and future research to improve understanding and treatment of osteoclast-related diseases like osteoporosis.
View Article and Find Full Text PDF
Article Synopsis
  • Amino acid permeases (AAPs) are vital for transporting amino acids in plants, but studies on foxtail millet are less advanced compared to crops like rice.
  • This research identified two AAP transcripts that are induced by nitric oxide, with one (SiAAP9) transporting more amino acids and having a significant impact on seed growth.
  • SiAAP9 also showed increased tolerance to glutamate and histidine, and its enhanced amino acid transport capabilities suggest it could improve the nutritional quality of foxtail millet through selective breeding.
View Article and Find Full Text PDF

Chemoresistance is the main obstacle in the clinical treatment of osteosarcoma (OS). In this study, we investigated the role of EF-hand domain-containing protein 1 (EFHD1) in OS chemotherapy resistance. We found that the expression of EFHD1 was highly correlated with the clinical outcome after chemotherapy.

View Article and Find Full Text PDF

Titanium (Ti) and its alloys have been widely employed in the treatment of orthopedics and other hard tissue diseases. However, Ti-based implants are bioinert and suffer from bacterial infections and poor osseointegration in clinical applications. Herein, we successfully modified Ti with a porous -halaminated spermidine-containing polymeric coating (Ti-SPD-Cl) through alkali-heat treatment, surface grafting and chlorination, and it has both excellent antibacterial and osteogenic abilities to significantly enhance osseointegration.

View Article and Find Full Text PDF

Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation.

View Article and Find Full Text PDF

Articular cartilage has an appropriate multilayer structure and superior tribological properties and provides a structural paradigm for design of lubricating materials. However, mimicking articular cartilage traits on prosthetic materials with durable lubrication remains a huge challenge. Herein, an ingenious three-in-one strategy is developed for constructing an articular cartilage-like bilayer hydrogel coating on the surface of ultra-high molecular weight polyethylene (BH-UPE), which makes full use of conceptions of interfacial interlinking, high-entanglement crosslinking, and interface-modulated polymerization.

View Article and Find Full Text PDF

Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8kjn6vk6vnpp8lhu4ei4pv10n5gdbvjs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once