Truncated octahedral spinel LiMnO was homogenously coated by amorphous carbon layer chemical vapor deposition (CVD) using acetylene gas (CH) as carbon source to ease Mn dissolution to improve high-temperature performance, delivering a capacity retention of 92.9% after 1000 cycles at 5C at 50 °C.
View Article and Find Full Text PDFFerric gallate (Fe-GA), an ancient metal-organic framework (MOF) material, has been recently employed as an eco-friendly and cost-effective precursor sample to synthesize a porous carbon confined nano-iron composite (Fe/RPC), and the Fe element in the Fe/RPC sample could be further oxidized to FeO nanocrystals in a 180 °C hydrothermal condition. On this foundation, this work reports an optimized approach to engineering a hierarchical one-dimensional porous carbon and two-dimensional reduced graphene oxide (RGO) supporting framework with FeO nanoparticles well dispersed. Under mild hydrothermal condition, the redox reaction between metal iron atoms from Fe/RPC and surface functional radicals from few-layered graphene oxide sheets (GO) is triggered.
View Article and Find Full Text PDFDevelopment of high-performance cathode materials is one of the key challenges in the practical application of sodium-ion batteries. Among all the cathode materials, layered sodium transition-metal oxides are particularly attractive. However, undesired phase transitions are often reported and have detrimental effects on the structure stability and electrochemical performance.
View Article and Find Full Text PDFSilicon has been considered as a promising anode material for lithium-ion batteries owing to its extraordinarily high capacity. However, the huge volume expansion during cycling results in severe pulverization and disintegration of active materials, especially when the particle size is in microscale. This challenge can be addressed by highly stretchable polymer binders engineered with helical polysaccharides.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2019
Lithium (Li) metal is a favorable anode for most energy storage equipment, thanks to its higher theoretical specific capacity. However, nonuniform Li nucleation/growth results in large-sized and irregular dendrites generated from the Li anode, which causes rapid capacity fade and serious safety hazard, hindering its widespread practical applications. In this paper, with the aid of a lithium nitrate (LiNO) additive in a carbonate-based electrolyte, the Li anode shows low hysteresis for in excess of 1000 h at a current density of 0.
View Article and Find Full Text PDFSuppressing the formation of lithium (Li) dendrites is central to implementing Li-metal anode, which has gained growing attention due to its ultrahigh specific capacity and low redox potential. Here, a novel approach is adopted to deposit Li-metal within a rigid three-dimensional (3D) carbon paper (3DCP) network, which consists of a cross-link framework of carbon fibers and graphene nanosheets (GNs). This unique structure yields a uniform distribution of Li-nuclei during the preliminary stage of Li-plating and the formation of a stable solid-electrolyte interface.
View Article and Find Full Text PDFP2-type Na(2/3)Ni(1/3)Mn(2/3)O2 was synthesized by a controlled co-precipitation method followed by a high-temperature solid-state reaction and was used as a cathode material for a sodium-ion battery (SIB). The electrochemical behavior of this layered material was studied and an initial discharge capacity of 151.8 mA h g(-1) was achieved in the voltage range of 1.
View Article and Find Full Text PDFWell-confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium-sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as-prepared composite material consists of graphene-wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network.
View Article and Find Full Text PDF