Rice sheath blight is a serious disease caused by that reduces rice yield. Currently, there is a lack of efficient and environmentally friendly control methods. In this study, we found that () Y6 could significantly inhibit the growth of mycelium in , and its control efficiency against rice sheath blight was 58.
View Article and Find Full Text PDFIndole-3-acetic acid (IAA), as an important regulator of potato growth, seriously affects the growth and yield of potato. Although many studies have reported that IAA-producing Bacillus can promote plant growth, little research has been conducted on its synthesis pathway and molecular mechanisms. In this study, an IAA-producing strain WL35 was identified as , and its yield was 48.
View Article and Find Full Text PDFAccumulated research strongly indicates that Janus kinase 3 (JAK3) is intricately involved in the initiation and advancement of a diverse range of human diseases, underscoring JAK3 as a promising target for therapeutic intervention. However, JAK3 shows significant homology with other JAK family isoforms, posing substantial challenges in the development of JAK3 inhibitors. To address these limitations, one strategy is to design selective covalent JAK3 inhibitors.
View Article and Find Full Text PDFIn recent years, avocado branch blight has gradually become one of the major diseases causing mortality of avocado trees, which seriously affects the economic development of avocado planting regions. In order to investigate the cause of the disease, the pathogens were isolated from the interroot of avocado trees with the onset of the disease and identified as . At the same time, three strains, YK194, YK201, and YK268, with better antagonistic effects and high stability against , were isolated from the rhizospheric soil of healthy avocado plants.
View Article and Find Full Text PDFExtensive research has accumulated which suggests that phosphatidylinositol 3-kinase delta (PI3Kδ) is closely related to the occurrence and development of various human diseases, making PI3Kδ a highly promising drug target. However, PI3Kδ exhibits high homology with other members of the PI3K family, which poses significant challenges to the development of PI3Kδ inhibitors. Therefore, in the present study, a hybrid virtual screening (VS) approach based on a ligand-based pharmacophore model and multicomplex-based molecular docking was developed to find novel PI3Kδ inhibitors.
View Article and Find Full Text PDFFront Microbiol
December 2023
Potato common scab, caused mainly by , causes surface necrosis and reduces the economic value of potato tubers, but effective chemical control is still lacking. In this study, an attempt was made to control potato common scab by inoculating potatoes with () and to further investigate the mechanism of biological control. The results showed that Y6 could reduce the disease severity of potato common scab from 49.
View Article and Find Full Text PDFDeveloping nanocarriers for oral drug delivery is often hampered by the dilemma of balancing mucus permeation and epithelium absorption, since huge differences in surface properties are required for sequentially overcoming these two processes. Inspired by mucus-penetrating viruses that universally possess a dense charge distribution with equal opposite charges on their surfaces, we rationally designed and constructed a poly(carboxybetaine)-based and polyguanidine-inserted cationic micelle platform (hybrid micelle) for oral drug delivery. The optimized hybrid micelle exhibited a great capacity for sequentially overcoming the mucus and villi barriers.
View Article and Find Full Text PDFThe combination of highly specific targeting ability and potent killing effect has made antibody-drug conjugates (ADCs) a popular area of focus in the development of anti-cancer drugs. However, the large molecular weight of IgG antibodies (∼ 150 kDa) often faces challenges in penetrating capillaries and stroma in tumor tissue. Moreover, when the drug-antibody ratio (DAR) is too low (DAR < 2) or too high (DAR > 6) it decreases the effectiveness of the ADC and further increases the potential for aggregation, overall clearance of the early system payload, and release rate.
View Article and Find Full Text PDFPhosphatidylinositol 3-kinase delta (PI3Kδ) and gamma (PI3Kγ) are predominantly located in immune and hematopoietic cells. It is well-established that PI3Kδ/γ plays important roles in the immune system and participates in inflammation; hence, it could be a potential target for anti-inflammatory therapy. Currently, several PI3K inhibitors are used clinically to treat cancers with aberrant PI3K signaling; however, their role in treating acute respiratory inflammatory diseases has rarely been explored.
View Article and Find Full Text PDFSince dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3K has emerged as an attractive target for drug development. Although copanlisib is the first pan-PI3K inhibitor to be approved for clinical use, the precise mechanism by which it acts on PI3K has not been fully elucidated. To reveal the binding mechanisms and structure-activity relationship between PI3K and copanlisib, a comprehensive modeling approach that combines 3D-quantitative structure-activity relationship (3D-QSAR), pharmacophore model, and molecular dynamics (MD) simulation was utilized.
View Article and Find Full Text PDFAn important objective of evolutionary biology has always been to grasp the evolutionary and genetic processes that contribute to speciation. The present work provides the first detailed account of the genetic and physiological adaptation to changing environmental temperatures as well as the reasons causing intraspecific divergence in the from the Hengduan Mountain (HM) region, one of the biodiversity hotspots. One hundred sixty-one individuals from five populations in the HM region had their reduced-representation genome sequenced, and one additional individual from each community had their genomes resequenced.
View Article and Find Full Text PDFCompared with traditional medical methods, gene therapy and photodynamic therapy are the new fields of cancer treatment, and they more accurately and effectively obtain preferable therapeutic effects. In this study, a chemotherapy drug-free nanotherapeutic system based on ZIF-90 encapsulated with Ce6-G3139 and Ce6-DNAzyme for gene and photodynamic therapies was constructed. Once entering the cancer cell, the therapy system will decompose and release Zn, Ce6-G3139, and Ce6-DNAzyme in the acidic environment.
View Article and Find Full Text PDFSince dysregulation of the phosphatidylinositol 3-kinase gamma (PI3Kγ) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3Kγ has emerged as an attractive target for drug development. IPI-549 is the only selective PI3Kγ inhibitor that has advanced to clinical trials, thus, IPI-549 could serve as a promising template for designing novel PI3Kγ inhibitors. In this present study, a modeling strategy consisting of common feature pharmacophore modeling, receptor-ligand pharmacophore modeling, and molecular dynamics simulation was utilized to identify the key pharmacodynamic characteristic elements of the target compound and the key residue information of the PI3Kγ interaction with the inhibitors.
View Article and Find Full Text PDFThe insoluble phosphorus in the soil is extremely difficult to be absorbed and used directly through the potato root system. Although many studies have reported that phosphorus-solubilizing bacteria (PSB) can promote plant growth and uptake of phosphorus, the molecular mechanism of phosphorus uptake and growth by PSB has not been investigated yet. In the present study, PSB were isolated from rhizosphere soil in soybean.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) are an inevitable trend in the development of modern "precision medicine". The goal of this work is to produce enzyme-responsive antibody nanoparticle-loaded medication (FMSN-Dox-H2-AE01) based on the EGFR antibody (AE01) and human serum albumin (HSA) shelled mesoporous silica nanoparticles. HSA and antibodies on the surface of the particlescan not only enhance the biocompatibility of the particle and avoid early drug leakage but also allow selective biodegradation triggered by matrix metalloproteinase-2 (MMP-2), which are overexpressed enzymes in some tumor tissues.
View Article and Find Full Text PDFThe primary objective of this study was to obtain humanized EGFR antibody and to study it in vitro binding and endocytosis to A431 epidermoid carcinoma cells overexpressing EGFR. Firstly, humanized anti-EGFR AE01 was stably expressed in CHO system. The expression of AE01 was detected by SDS-PAGE and Western blot.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2023
The Chinese hamster ovary (CHO) cell is the most widely used biopharmaceutical expression system, but its long-term expression is unstable. This issue can be effectively addressed by site-specific integration of exogenous genes into the genome. Therefore, exogenous protein sites with stable expression in the CHO cell genome must be identified.
View Article and Find Full Text PDFIntroduction: Camellia is among the most ornamentally valuable flowers and plants worldwide. Flower abscission typically causes significant financial losses by the horticultural landscape. Previous research has revealed that phytohormones, transcription factors, and other genes involved in floral development regulate the maintenance and mortality of flowers.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2023
In recent years, laser-mediated photodynamic therapy and photothermal therapy have attracted widespread attention due to their minimally invasive, easy to operate characteristics and high specificity. However, the traditional photodynamic or photothermal therapy exist several shortcomings such as the hypoxic microenvironment, intracellular heat shock proteins or complex operation. In this study, covalent organic framework (COF) was used as the drug carrier to equip with the photosensitizer indocyanine green (ICG) and the hypoxia-activating prodrug AQ4N.
View Article and Find Full Text PDFPhosphatidylinositol 3-kinase gamma (PI3Kγ) plays a critical role in immune signaling, thus identifying PI3Kγ as a potential therapeutic target. However, developing selective PI3Kγ inhibitors is hampered by the highly conserved structure of the ATP-binding pocket. Focused effort would be needed to improve upon the γ-subtype selectivity of the inhibitors; therefore, in the present study, a naïve Bayesian classification (NBC) model with PI3Kγ structural features that integrates molecular docking and pharmacophore based on multiple PI3Kγ conformations was developed for virtual screening against PI3Kγ to find novel selective PI3Kγ inhibitors.
View Article and Find Full Text PDFAluminum (Al) toxicity significantly restricts crop production on acidic soils. Although rice is highly resistant to Al stress, the underlying resistant mechanisms are not fully understood. Here, we characterized the function of OsNIP1;2, a plasma membrane-localized nodulin 26-like intrinsic protein (NIP) in rice.
View Article and Find Full Text PDFPhosphatidylinositol 3-kinase gamma (PI3Kγ) has been proven to be a potential target for the treatment of inflammatory diseases of the airway; however, there are few reports of selective PI3Kγ inhibitors being used in the field of airway inflammation thus far. Herein, a study employing in vitro and in vivo methodologies was carried out to assess the anti-airway inflammatory effects of JN-PK1, a selective PI3Kγ inhibitor. In RAW264.
View Article and Find Full Text PDFPhosphatidylinositol 3-kinase (PI3K) is the central regulator of cellular functions and is suggested as a target for various diseases; thus, effective PI3K inhibitors provide a promising opportunity for the pharmaceutical intervention of many diseases. Among them, PI3Kγ has received more attention because of its essential role in immune signaling. However, the development of novel selective PI3Kγ inhibitors is a major challenge due to the high sequence homology across the class I PI3K isoforms.
View Article and Find Full Text PDFThere has been no systematic identification and screening of candidate reference genes for normalization of quantitative real-time PCR (qRT-PCR) results in to date. Therefore, the present study used and Ubiquitin to predict their stabilities on different aboveground tissues (matured leaves (ML), stem tips (STM), and flower buds (FB)) at different developmental stages (young and adult plants) using five statistical algorithms: Delta Ct method, BestKeeper, geNorm, Normfinder, and RefFinder. The findings were confirmed using ML obtained from plants that had been stressed by drought.
View Article and Find Full Text PDF