Oxidative stress and inflammation play key roles in the pathogenesis of Multiple sclerosis (MS). Different drugs have been used in the clinical practice, however, there is not a completely effective treatment. Due to its potential therapeutic action, medical ozone represents a promising approach for neurodegenerative disorders.
View Article and Find Full Text PDFMedical ozone reduced inflammation, IL-1β, TNF-α mRNA levels and oxidative stress in PG/PS-induced arthritis in rats. The aim of this study was to investigate the medical ozone effects in patients with rheumatoid arthritis treated with methotrexate and methotrexate+ozone, and to compare between them. A randomized clinical study with 60 patients was performed, who were divided into two groups: one (n=30) treated with methotrexate (MTX), folic acid and Ibuprophen (MTX group) and the second group (n=30) received the same as the MTX group+medical ozone by rectal insufflation of the gas (MTX+ozone group).
View Article and Find Full Text PDFAtherogenesis is associated with the early retention of low-density lipoproteins (LDL) in the arterial intima by interaction with glycosaminoglycan (GAG)-side chains of proteoglycans. Retained LDL undergo reactive oxygen species-mediated oxidation. Oxidized LDL trigger oxidative stress (OS) and inflammation, contributing to atherosclerosis development.
View Article and Find Full Text PDFObjectives: Induced dilated cardiomyopathy is the main limitation of the anti-cancer drug doxorubicin, which causes oxidative stress and cardiomyocyte death. As ozone therapy can activate the antioxidant systems, this study aimed to investigate the therapeutic efficacy of ozone-oxidative preconditioning against doxorubicin-induced cardiotoxicity.
Methods: The study was carried out from September 2013 to January 2014.