Regulating appropriate valence states of metal active centers, such as Ce/Ce and Mn/Mn, as well as surface vacancy defects, is crucial for enhancing the catalytic activity of cerium-based and manganese-based nanozymes. Drawing inspiration from the efficient substance exchange in rhizobia-colonized root cells of legumes, we developed a symbiosis nanozyme system with rhizobia-like CeO nanoclusters robustly anchored onto root-like MnO nanosupports (CeO/MnO). The process of "substance exchange" between Ce and Mn atoms-reminiscent of electron transfer-not only fine-tunes the metal active sites to achieve optimal Ce/Ce and Mn/Mn ratios but also enhances the vacancy ratio through interface defect engineering.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
The kinetics and pathway of most catalyzed reactions depend on the existence of interface, which makes the precise construction of highly active single-atom sites at the reaction interface a desirable goal. Herein, we propose a thermal printing strategy that not only arranges metal atoms at the silica and carbon layer interface but also stabilizes them by strong coordination. Just like the typesetting of Chinese characters on paper, this method relies on the controlled migration of movable nanoparticles between two contact substrates and the simultaneous emission of atoms from the nanoparticle surface at high temperatures.
View Article and Find Full Text PDFA standing puzzle in electrochemistry is that why the metal-nitrogen-carbon catalysts generally exhibit dramatic activity drop for oxygen reduction when traversing from alkaline to acid. Here, taking FeCo-N-C double-atom catalyst as a model system and combining the ab initio molecular dynamics simulation and in situ surface-enhanced infrared absorption spectroscopy, we show that it is the significantly distinct interfacial double-layer structures, rather than the energetics of multiple reaction steps, that cause the pH-dependent oxygen reduction activity on metal-nitrogen-carbon catalysts. Specifically, the greatly disparate charge densities on electrode surfaces render different orientations of interfacial water under alkaline and acid oxygen reduction conditions, thereby affecting the formation of hydrogen bonds between the surface oxygenated intermediates and the interfacial water molecules, eventually controlling the kinetics of the proton-coupled electron transfer steps.
View Article and Find Full Text PDFThe design of an efficient catalytic system with low Pt loading and excellent stability for the acidic oxygen reduction reaction is still a challenge for the extensive application of proton-exchange membrane fuel cells. Here, a gas-phase ordered alloying strategy is proposed to construct an effective synergistic catalytic system that blends PtM intermetallic compounds (PtM IMC, M = Fe, Cu, and Ni) and dense isolated transition metal sites (M-N ) on nitrogen-doped carbon (NC). This strategy enables Pt nanoparticles and defects on the NC support to timely trap flowing metal salt without partial aggregation, which is attributed to the good diffusivity of gaseous transition metal salts with low boiling points.
View Article and Find Full Text PDF