Stem Cell Res Ther
November 2024
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application.
View Article and Find Full Text PDFOral aphthous ulcers are common mucosal lesions that cause pain and discomfort. There are diverse biomaterials and drug treatments for oral ulcers used in both research and clinical settings. However, the complex oral environment often results in low adhesion and short drug retention times, which lead to poor drug availability and treatment outcomes.
View Article and Find Full Text PDFBackground: Oral mucositis is the most common and troublesome complication for cancer patients receiving radiotherapy or chemotherapy. Recent research has shown that , an important economic crop widely grown in China, has epithelial protective effects in several other organs. However, it is unknown whether or not can exert a beneficial effect on oral mucositis.
View Article and Find Full Text PDFThere are few effective therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA) due to the unclear pathology and mechanisms. We aimed to confirm the roles of GPX4 and ferroptosis in TMJOA progression. ELISA assay was hired to evaluate concentrations of ferroptosis-related markers.
View Article and Find Full Text PDFPeriodontitis is a chronic inflammatory disease raising the risks of tooth-supporting structures destruction and even tooth loss. The way to reconstruct periodontal bone tissues in inflammatory microenvironment has been long in demand for periodontitis treatment. In this study, the lycium barbarum glycopeptide (LbGP) loaded gelatin-based scaffolds were fabricated for periodontitis treatment.
View Article and Find Full Text PDFObjective: This study investigates the DP7-C/miR-26a complex as a stable entity resulting from the combination of miR-26a with the immunomodulatory peptide DP7-C. Our focus is on utilizing DP7-C loaded with miR-26a to modulate the immune microenvironment in bone and facilitate osteogenesis.
Methods: The DP7-C/miR-26a complex was characterized through transmission electron microscopy, agarose electrophoresis, and nanoparticle size potentiometer analysis.
Background: Numerous studies have demonstrated the impact of beverage consumption on overall health and oral health. Specifically, high consumption of sugar-sweetened beverages and coffee has been associated with an increased risk of metabolic disorders and periodontitis. Conversely, high intake of plain water has been linked to various health benefits, including weight management and reduced energy intake.
View Article and Find Full Text PDFGelatin and starch are considered as promising sustainable materials for their abundant production and good biodegradability. Efforts have been made to explore their medical application. Herein, scaffolds based on gelatin and starch with a preferred microstructure and antibacterial antioxidant property were fabricated by the emulsion template method.
View Article and Find Full Text PDFOral tongue squamous cell carcinoma (OTSCC) is a malignant tumor. Recently, studies have found that adenylate cyclase 6 (ADCY6) plays a pivotal role in many lethal tumors formation processes. The role of ADCY6 in OTSCC remains unknown.
View Article and Find Full Text PDFPurpose: As small bioactive molecules, exosomes can deliver osteogenesis-related miRNAs to target cells and promote osteogenesis. This study aimed to investigate miR-26a as a therapeutic cargo to be loaded into bone marrow stromal cell exosomes through a novel immunomodulatory peptide (DP7-C).
Methods: After transfecting BMSCs with DP7-C as a transfection agent, exosomes were extracted by ultracentrifugation from the culture supernatant of miR-26a-modified BMSCs.
Successfully treating bone infections is a major orthopedic challenge. Clinically, oral, intravenous, or intramuscular injections of drugs are usually used for direct or complementary treatment. However, once the drug enters the system, it circulates throughout the body, leading to an insufficient local dose and limiting the therapeutic effect because of the lack of targeting in the drug system.
View Article and Find Full Text PDFObjective: A lack of relevant research on Lycium barbarum polysaccharide-glycoprotein (LBP) application in oral diseases. Here, we focused on the effect of LBP on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and periodontitis bone loss.
Methods: Human periodontal ligament stem cells (hPDLSCs) were isolated and identified by flow cytometry.
Background And Objective: Hydroxyapatite scaffolds with different morphologies have been widely used in bone tissue engineering. Moreover, microRNAs (miRNAs) have been proven to be extensively involved in regulating bone regeneration. We developed grooved porous hydroxyapatite (HAG) scaffolds with good osteogenic efficiency.
View Article and Find Full Text PDFBackground And Objective: As an important mediator of intercellular interaction and formation of extracellular bone matrix, porous scaffolds are widely used for bone regeneration. Accumulating evidences demonstrate that microRNA are involved in the regulation of scaffolds-induced bone regeneration. Recently, we revealed that miR-210-3p was highly expressed during osteogenesis induced by HAG.
View Article and Find Full Text PDFScaffold materials used for bone defect repair are often limited by osteogenic efficacy. Moreover, microRNAs (miRNAs) are involved in regulating the expression of osteogenic-related genes. In previous studies, we verified the enhancement of osteogenesis using a grooved porous hydroxyapatite scaffold (HAG).
View Article and Find Full Text PDFNatural products are well-characterized to have pharmacological or biological activities that can be of therapeutic benefits for cancer therapy, which also provide an important source of inspiration for discovery of potential novel small-molecule drugs. In the past three decades, accumulating evidence has revealed that natural products can modulate a series of key autophagic signaling pathways and display therapeutic effects in different types of human cancers. In this review, we focus on summarizing some representative natural active compounds, mainly including curcumin, resveratrol, paclitaxel, Bufalin, and Ursolic acid that may ultimately trigger cancer cell death through the regulation of some key autophagic signaling pathways, such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, AMPK, ULK1, Beclin-1, Atg5 and p53.
View Article and Find Full Text PDFPrevious preliminary studies have suggested that hydroxyapatite with a grooved structure (HAG) scaffold has good osteogenic potential. This type of scaffold may aid osteogenesis during the repair of large maxillofacial bony defects. The ectopic osteogenic effect and underlying mechanism were further studied using porous HAG scaffold-based delivery of human placenta-derived mesenchymal stem cells (hPMSCs).
View Article and Find Full Text PDFMicroRNAs can regulate a variety of physiological and pathological processes and are increasingly recognized as being involved in regulating the malignant progression of cancer, which is an important direction for the study and treatment of cancer. In addition, the tumor microenvironment has gradually become an important direction of study for combating cancer. Researchers can inhibit tumor growth by remodeling and suppressing an immunosuppressive phenotype in the tumor microenvironment.
View Article and Find Full Text PDFJ Antimicrob Chemother
November 2020
Background: Antimicrobial peptides are promising alternative antimicrobial agents to combat MDR. DP7, an antimicrobial peptide designed in silico, possesses broad-spectrum antimicrobial activities and immunomodulatory effects. However, the effects of DP7 against Pseudomonas aeruginosa and biofilm infection remain largely unexplored.
View Article and Find Full Text PDFHydroxyapatite scaffolds (HASs) are widely studied as suitable materials for bone replacement scaffolds due to their chemical similarities to organic materials. In our previous study, a novel HAS with a 25‑30‑µm groove structure (HAS‑G) exhibited enhanced osteogenesis of bone mesenchymal stromal cells (BMSCs) compared with HAS, potentially by modulating the macrophage‑induced immune microenvironment. However, the exact effects of different surface patterns on the physiological processes of attached cells is not known.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2020
Objectives: The purpose of this study was to investigate the role of hyperbaric oxygen (HBO) in the healing of teeth extraction sockets and in alveolar ridge preservation. This may provide an experimental basis for the widespread application of HBO in oral implantation.
Methods: A total of 32 beagle dogs were included in the study and randomly divided equally between an HBO group treated with hyperbaric oxygen (100% O, 2.
Magnesium (Mg) is an emerging degradable metal for orthopaedics and its degradation product, Mg2+, has been reported to positively affect osteogenesis. Porous hydroxyapatite (HA) has been extensively studied for bone regeneration, but its slow degradation is an important factor limiting its uses. Therefore, we studied the combination of Mg and HA to integrate the advantages of the two materials while circumventing their disadvantages, with the aim of determining the optimum Mg/HA ratio.
View Article and Find Full Text PDFResearches have revealed the vital roles of the generated immune environment via the response of immune cells growing on biomaterial surfaces in the bone healing process. HAS and novel constructed microgrooved patterns of HAS (HAS-G) are widely used as biocompatible ceramic, especially as a mimic of the natural bone matrix. However, it is unclear whether osteoimmune response induced by HAS and HAS-G affects the osteogenic differentiation of bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDF