Publications by authors named "Yancopoulos G"

We describe rearrangement events which alter expression from a productive VHDJH rearrangement in an Abelson murine leukemia virus-transformed pre-B cell line. One such rearrangement results in replacement of the initially expressed variable region gene by a site-specific join between the open reading frame of a LINE-1 repetitive element and a remaining JH segment. We discuss this event in the context of the 'accessibility' model of recombinase control, and with respect to similar rearrangements involved in oncogene activation.

View Article and Find Full Text PDF

We have demonstrated that the entire murine N-myc gene and the sequences necessary for its expression in human neuroblastoma cells are contained within a 7.4-kilobase murine genomic clone. The complete nucleotide sequence of this gene reveals a number of striking similarities and differences when compared to the related c-myc gene including the following: (i) each gene contains three exons of which the first encodes a long 5'-untranslated leader sequence; (ii) the coding regions of the N- and c-myc genes share regions of substantial nucleic acid homology, the putative N-myc protein shares substantial homology with the c-myc protein; (iii) as with c-myc, extensive nucleotide sequence homology exists between the untranslated regions of the human and murine N-myc gene transcripts; however, the N-myc and c-myc untranslated regions are totally divergent; (iv) the N-myc transcriptional promoter differs from that of c-myc and is more related to the promoter of the simian virus 40.

View Article and Find Full Text PDF

The myc family of cellular oncogenes contains three known members. The N-myc and c-myc genes have 5'-noncoding exons, strikingly homologous coding regions, and display similar oncogenic potential in an in vitro transformation assay. The L-myc gene is less well characterized, but shows homology to N-myc and c-myc (ref.

View Article and Find Full Text PDF

Analyses of A-MuLV transformed cell lines have provided fundamental insights into the molecular mechanisms which control the rearrangement events leading to the expression of specific antigen receptor genes. These studies have clearly indicated that tissue-specific, developmental stage-specific, and allelically excluded assembly of Ig H and L chain and TCR variable region genes are very strictly regulated processes and, furthermore, that this regulation probably is effected at the level of the accessibility of the individual sets of V gene segments to a common recombinase. More preliminary studies have also suggested that accessibility targeting may be involved in the regulation of directed Ig H chain class-switch recombination events.

View Article and Find Full Text PDF

We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics.

View Article and Find Full Text PDF

N-myc, a cellular gene bearing homology to the c-myc protooncogene, is frequently amplified and overexpressed in a highly restricted set of related tumors, most notably neuroblastomas and retinoblastomas. We have examined the possibility that N-myc may play a causal role in the genesis of these tumors by defining its ability to transform primary cells in tissue culture. Using an N-myc expression construct capable of producing constitutively deregulated levels of full-length murine N-myc mRNA, we demonstrate that a deregulated N-myc gene can cooperate with the activated Ha-ras oncogene to cause tumorigenic conversion of normal embryonic fibroblasts in a manner indistinguishable from the deregulated c-myc oncogene.

View Article and Find Full Text PDF

It is generally accepted that unrearranged immunoglobulin VH gene segments are not expressed and that assembly of a complete heavy chain gene is required to activate a previously silent VH promoter. We report that unrearranged VH gene segments are indeed expressed at a high level, but only in a developmentally controlled and tissue-specific manner. Unrearranged VH expression is limited to the very early stages of the B-lymphocyte differentiation pathway, and it is most prominent in cells undergoing VH to DJH rearrangement.

View Article and Find Full Text PDF

The variable regions of immunoglobulin heavy chains are encoded in the germ line by three discrete DNA segments: VH (variable) elements, D (diversity) elements and JH (joining) elements. During the differentiation of B lymphocytes, individual segments from each group are brought together by recombination to form the complete VHDJH variable region. To understand these processes better, we have now isolated and sequenced molecular clones representing intermediates (DJH fusions) and final products (VH-to-DJH joins) of heavy-chain gene rearrangement in two cell lines that represent analogues of cells at early stages of B-lymphocyte differentiation.

View Article and Find Full Text PDF

The most JH-proximal VH gene segments are used highly preferentially to form VHDJH rearrangements in pre-B-cell lines. This result demonstrates that the rate at which immunoglobulin VH gene segments recombine is influenced by their chromosomal organization, and that the initial repertoire of VH genes expressed in pre-B cells is strikingly different from that seen in mature populations.

View Article and Find Full Text PDF

The immunoglobulin heavy chain variable region is encoded as three separate libraries of elements in germ-line DNA: VH, D and JH. To examine the order and regulation of their joining, we have developed assays that distinguish their various combinations and have used the assays to study tumor cell analogs of B-lymphoid cells as well as normal B-lymphoid cells. Abelson murine leukemia virus (A-MuLV) transformed fetal liver cells - the most primitive B-lymphoid cell analog available for analysis - generally had DJH rearrangements at both JH loci.

View Article and Find Full Text PDF