Adv Healthc Mater
September 2024
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation.
View Article and Find Full Text PDFIn recent years, there has been a notable rise in the number of patients afflicted with laryngeal diseases, including cancer, trauma, and other ailments leading to voice loss. Currently, the market is witnessing a pressing demand for medical and healthcare products designed to assist individuals with voice defects, prompting the invention of the artificial throat (AT). This user-friendly device eliminates the need for complex procedures like phonation reconstruction surgery.
View Article and Find Full Text PDFDue to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2022
Electronic skin (e-skin) has attracted tremendous interest due to its diverse potential applications, including in physiological signal detection, health monitoring, and artificial throats. However, the major drawbacks of traditional e-skin are the weak adhesion of substrates, incompatibility between sensitivity and stretchability, and its single function. These shortcomings limit the application of e-skin and increase the complexity of its multifunctional integration.
View Article and Find Full Text PDFWe report an artificial eardrum using an acoustic sensor based on two-dimensional MXene (TiCT), which mimics the function of a human eardrum for realizing voice detection and recognition. Using MXene with a large interlayer distance and micropyramid polydimethylsiloxane arrays can enable a two-stage amplification of pressure and acoustic sensing. The MXene artificial eardrum shows an extremely high sensitivity of 62 kPa and a very low detection limit of 0.
View Article and Find Full Text PDFCracks play an important role in strain sensors. However, a systematic analysis of how cracks influence the strain sensors has not been proposed. In this work, an intelligent and highly sensitive strain sensor based on indium tin oxide (ITO)/polyurethane (PU) micromesh is realized.
View Article and Find Full Text PDFAs the aging population increases in many countries, electronic skin (e-skin) for health monitoring has been attracting much attention. However, to realize the industrialization of e-skin, two factors must be optimized. The first is to achieve high comfort, which can significantly improve the user experience.
View Article and Find Full Text PDFCOVID-19 is a highly contagious human infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the war with the virus is still underway. Since no specific drugs have been made available yet and there is an imbalance between supply and demand for vaccines, early diagnosis and isolation are essential to control the outbreak. Current nucleic acid testing methods require high sample quality and laboratory conditions, which cannot meet flexible applications.
View Article and Find Full Text PDFTextiles are materials that are extensively used in everyday life; textile-based sensors can, therefore, be regarded as ideal devices for a health monitor. However, previously reported textile sensors have limited prospects due to their single function or incompatibility. Traditional textile sensors generally focus on signal detection, which has not been able to be combined with an actuator to provide real-time health status feedback.
View Article and Find Full Text PDFHigh-performance electromagnetic interference (EMI) shielding materials with ultralow density, excellent flexibility, and good mechanical properties are highly desirable for aerospace and wearable electronics. Herein, honeycomb porous graphene (HPG) fabricated by laser scribing technology is reported for EMI shielding and wearable applications. Due to the honeycomb structure, the HPG exhibits an EMI shielding effectiveness (SE) up to 45 dB at a thickness of 48.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
Current wearable sensors are fabricated with substrates, which limits the comfort, flexibility, stretchability, and induces interface mismatch. In addition, the substrate prevents the evaporation of sweat and is harmful to skin health. In this work, we have enabled the substrate-free laser scribed graphene (SFG) electronic skin (e-skin) with multifunctions.
View Article and Find Full Text PDFThe flexible pressure sensor is one of the essential components of the wearable device, which is a critical solution to the applications of artificial intelligence and human-computer interactions in the future. Due to its simple manufacturing process and measurement methods, research related to piezoresistive mechanical sensors is booming, and those sensors are already widely used in industry. However, existing pressure sensors are almost all based on negative resistance variations, making it difficult to reach a balance between the sensitivity and the detection range.
View Article and Find Full Text PDFIntraocular pressure (IOP) is the prime indicator for the diagnosis and treatment of glaucoma. IOP has circadian rhythm changes and is dependent on body gestures; therefore, a single measurement in the clinic can be misleading for diagnosis. Herein, few-layer graphene is utilized to develop non-invasive sensors with high transparency, sensitivity, linearity, and biocompatibility for 24 h continuous IOP monitoring.
View Article and Find Full Text PDFThermoacoustic (TA) effect has been discovered for more than 130 years. However, limited by the material characteristics, the performance of a TA sound source could not be compared with magnetoelectric and piezoelectric loudspeakers. Recently, graphene, a two-dimensional material with the lowest heat capacity per unit area, was discovered to have a good TA performance.
View Article and Find Full Text PDFIn recent years, flexible light-emitting devices (LEDs) have become the main focus in the field of display technology. Graphene, a two-dimensional layered material, has attracted great interest in LEDs due to its excellent properties. However, there are many problems such as efficiency, lifetime, and flexibility not well solved.
View Article and Find Full Text PDFThe human body is a "delicate machine" full of sensors such as the fingers, nose, and mouth. In addition, numerous physiological signals are being created every moment, which can reflect the condition of the body. The quality and the quantity of the physiological signals are important for diagnoses and the execution of therapies.
View Article and Find Full Text PDFMXenes have attracted great attention for their potential applications in electrochemical and electronic devices due to their excellent characteristics. Traditional sound sources based on the thermoacoustic effect demonstrated that a conductor needs to have an extremely low heat capacity and high thermal conductivity. Hence, a thin MXene film with a low heat capacity per unit area (HCPUA) and special layered structure is emerging as a promising candidate to build loudspeakers.
View Article and Find Full Text PDFMost mute people cannot speak due to their vocal cord lesion. Herein, to assist mute people to "speak", we proposed a wearable skinlike ultrasensitive artificial graphene throat (WAGT) that integrated both sound/motion detection and sound emission in single device. In this work, the growth and patterning of graphene can be realized at the same time, and a thin poly(vinyl alcohol) film with laser-scribed graphene was obtained by a water-assisted transferring process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Recently, flexible and wearable mechanical sensors have attracted great attention because of their potential applications in monitoring various physiological signals. However, conventional mechanical sensors rarely have both pressure and strain sensing abilities that can meet the demands of both subtle and large human motion detection. Besides, the mechanical sensors with tunable sensitivity or measuring range are also essential for their practical applications.
View Article and Find Full Text PDFDue to its excellent flexibility, graphene has an important application prospect in epidermal electronic sensors. However, there are drawbacks in current devices, such as sensitivity, range, lamination, and artistry. In this work, we have demonstrated a multilayer graphene epidermal electronic skin based on laser scribing graphene, whose patterns are programmable.
View Article and Find Full Text PDFBiosens Bioelectron
September 2018
Respiration is as one of the most essential physiological signals, which can be used to monitor human healthcare and activities. Herein, we report a flexible, lightweight and highly conductive porous graphene network as the humidity sensor for respiration monitoring. To enhance the sensing performance, the graphene oxide (GO), poly (3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) and Ag colloids (AC) were used to modify the porous graphene.
View Article and Find Full Text PDFBacteriorhodopsin protein extracted from is widely used in many biohybrid electronic devices and forms a research subject known as bioelectronics, which merges biology with electronic technique. The specific molecule structure and components of bR lead to its unique photocycle characteristic, which consists of several intermediates (bR, K, L, M, N, and O) and results in proton pump function. In this review, working principles and properties of bacteriorhodopsin are briefly introduced, as well as bR layer preparation method.
View Article and Find Full Text PDFMetal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio.
View Article and Find Full Text PDF