Publications by authors named "Yancong Li"

Gray leaf spot, northern leaf blight and southern leaf blight are three of the most destructive foliar diseases affecting maize (Zea mays L.). Here we identified a gene, ZmCPK39, that encodes a calcium-dependent protein kinase and negatively regulates quantitative resistance to these three diseases.

View Article and Find Full Text PDF

Gray leaf spot (GLS), caused by the fungal pathogens Cercospora zeae-maydis and Cercospora zeina, is a major foliar disease of maize worldwide (Zea mays L.). Here we demonstrate that ZmWAKL encoding cell-wall-associated receptor kinase-like protein is the causative gene at the major quantitative disease resistance locus against GLS.

View Article and Find Full Text PDF

Photoreforming of biomass into hydrogen, biofuels, and chemicals is highly desired, yet this field of research is still in its infancy. Developing an efficient, novel, and environmentally friendly photocatalyst is key to achieving these goals. To date, the nonmetallic and eco-friendly material carbon nitride has found many uses in reactions such as water splitting, CO reduction, N fixation, and biorefinery, owing to its outstanding photocatalytic activity.

View Article and Find Full Text PDF

The novel sulfomethylated lignin-grafted-polyacrylic acid (SL-g-PAA) hydrogel was fabricated in this work via a facile and green synthetic strategy for the efficient removal of heavy metal ions from wastewater, and then successively reused for chemiluminescence (CL). The sulfomethylation of lignin was first performed to improve its water solubility and introduce numerous active sites for adsorption of heavy metal ions. The as-synthesized SL-g-PAA hydrogel with high content of lignin exhibited the highly efficient and rapid removal of various metal ions from simulated wastewater.

View Article and Find Full Text PDF

Development of lignin-derived carbon adsorbents with ultrahigh phosphate adsorption activity and rapid adsorption kinetics is of great importance, yet limited success has been achieved. Herein, we develop a CeO functionalized N-doped lignin-derived biochar (Ce@NLC) via a cooperative modification strategy for effective and fast phosphate capture. The novel modification strategy not only contributes greatly to the loading of well-dispersed CeO nanoparticles with a smaller size, but also significantly increases the relative concentration of Ce(III) species on Ce@NLC.

View Article and Find Full Text PDF

As the severe damage of phosphate enrichment in the water ecosystem and the supply shortage of phosphate rock, developing an efficient method for the removal and recycling of phosphate from wastewater is of great significance. To achieve this goal, adsorption technology has been widely investigated, and various adsorbents were developed. Among them, the biomass-derived adsorbents including biomass-derived carbon-based materials, biomass-based anion exchangers and metal-biomass composites have attracted increasing attention over the past years due to the low cost, abundant renewable raw materials and environmental friendliness.

View Article and Find Full Text PDF

Design of carbon-based adsorbents derived from industrial lignin with superior phosphate adsorption performance is of great significance, yet limited researches have been reported. Here, we report a MgO-functionalized lignin-based bio-charcoal (MFLC) as an efficient adsorbent for phosphate removal. The obtained MgO nanoparticles were dispersed homogeneously on MFLC with particle size of 50-100 nm and higher loading content (28.

View Article and Find Full Text PDF

Plumbagin (PLB) has shown anti-cancer activity but the mechanism is unclear. This study has found that PLB has a potent pro-apoptotic and pro-autophagic effect on A549 and H23 cells. PLB arrests cells in G2/M phase, and increases the intracellular level of reactive oxygen species in both cell lines.

View Article and Find Full Text PDF

Background: Papillary thyroid carcinoma (PTC) is one of the most common endocrine malignancies. It is estimated that papillary thyroid microcarcinoma (PTMC) accounts for up to 30 % of all PTCs. The clinical significance of PTMC is still unclear, although it may be related to recurrence, distant metastasis, and mortality.

View Article and Find Full Text PDF