In order to alleviate the dendrite problem of zinc-ion batteries, a gel electrolyte is prepared by Maillard reactions occurring between hydrolyzed wool keratin and carboxymethyl cellulose under heating conditions. The prepared gel electrolyte with the addition of hydrolyzed wool keratin possesses good mechanical properties, and its maximum breaking strength, Young's modulus, and elastic modulus are 58.7, 10.
View Article and Find Full Text PDFIn order to achieve high-performance and stable sodium-ion batteries, numerous attempts have been made to construct continuous ion transport pathways, in which a separator is one of the key components that affects the battery performance. In this study, a novel low-tortuosity woven fabric separator is fabricated by combining a weaving technique with a cellulose-solution method, followed by an infusion of a TEMPO-oxidized bacterial cellulose slurry into woven fabric substrates. The macropores in the fabric combine with the micropores in the oxidized bacterial cellulose to form a separator with a suitable pore structure and low tortuosity, forming a continuous sodium ion transport channel within the sodium-ion battery and effectively enhancing ion transport dynamics.
View Article and Find Full Text PDF