In this study, a novel phage endolysin LysPFX32 was successfully expressed and characterized to investigate its antibacterial activity against P. fluorescens and its biofilm. The molecular docking results identified endolysin LysPFX32 showed an effective binding to peptidoglycan fragment.
View Article and Find Full Text PDF, a genus of fungi known for its fermentation capability and production of bioactive compounds, such as azaphilone pigments and Monacolin K, have received considerable attention because of their potential in biotechnological applications. Understanding the genetic basis of these metabolic pathways is crucial for optimizing the fermentation and enhancing the yield and quality of these products. However, spp.
View Article and Find Full Text PDFLactoferrin is crucial for the mammalian immune system, but the extraction of bovine lactoferrin (bLF) is low, and human lactoferrin in breast milk is costly. Although there are some reports on heterologous expression of lactoferrin, limited knowledge is available. In this study, structural characteristics and antioxidant activity of binary compounds formed by covalent modification of plant derived recombinant human lactoferrin (OsrhLF) with four typical carbohydrates including sodium alginate (SA), maltodextrin (Mal), pectin (Pec), and lactose (Lac).
View Article and Find Full Text PDFShewanella putrefaciens, commonly found in seafood, forms tenacious biofilms on various surfaces, contributing to spoilage and cross-contamination. Bacteriophages, owing to their potent lytic capabilities, have emerged as novel and safe options for preventing and eliminating contaminants across various foods and food processing environments. In this study, a novel phage SPX1 was isolated, characterized by a high burst size (43.
View Article and Find Full Text PDFMonacolin K (MK), also known as lovastatin, is a polyketide compound with the ability to reduce plasma cholesterol levels and many other bio-activities. Red yeast rice (also named Hongqu) rich in MK derived from Monascus fermentation has attracted widespread attention due to its excellent performance in reducing blood lipids. However, industrial Monascus fermentation suffers from the limitations such as low yield of MK, long fermentation period, and susceptibility to contamination.
View Article and Find Full Text PDFpigments (MPs), a class of secondary metabolites produced by spp., can be classified into yellow, orange, and red MPs according to their differences in the wavelength of the maximum absorption. However, the biosynthetic sequence and cellular biosynthesis mechanism of different MPs components are still not yet completely clear in spp.
View Article and Find Full Text PDFHere, we present a method for detection using clustered regularly interspaced short palindromic repeats associated with the CRISPR-associated protein 12a-hybridization chain reaction (CRISPR/Cas12a-HCR) system combined with polymerase chain reaction/recombinase-assisted amplification (PCR/RAA) technology. The approach relies on the gene as a biorecognition element and its amplification through PCR and RAA. In the presence of the target gene, Cas12a, guided by crRNA, recognizes and cleaves the amplification product, initiating the HCR.
View Article and Find Full Text PDFFour typical dietary polyphenols ((-)-epigallocatechin gallate (EGCG), quinic acid (QA), caffeic acid (CA), and ferulic acid (FA)) were covalently prepared with rice recombinant human lactoferrin (OsrhLF) and bovine lactoferrin (bLF), and their structure and physicochemical properties were investigated, different lycopene emulsions were made by ultrasonic emulsification to analyze gastrointestinal fate. The results indicated that the covalent modification polyphenols changed the secondary/tertiary structure of LF, significantly improving the surface hydrophilicity, thermal stability, and antioxidant activity of LF. Compared with the bLF group, the OsrhLF group was more hydrophilic and the thermal denaturation temperature of the OsrhLF-CA reached 104.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2024
Monascus pilosus has been used to produce lipid-lowering drugs rich in monacolin K (MK) for a long period. Genome mining reveals there are still many potential genes worth to be explored in this fungus. Thereby, efficient genetic manipulation tools will greatly accelerate this progress.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2023
Citrinin (CIT), a secondary metabolite produced by the filamentous fungi species, exhibits nephrotoxic, hepatotoxic, and carcinogenic effects in mammals, remarkably restricting the utilization of -derived products. CIT synthesis is mediated through the gene and modified by multiple genetic factors. Here, the regulatory effects of two transcripts, α, and β, generated via pre-mRNA alternative splicing (AS), were investigated using hairpin RNA (ihpRNA) interference, and their impact on CIT biosynthesis and the underlying mechanisms were assessed through chemical biology and transcriptome analyses.
View Article and Find Full Text PDFDetection of viable Vibrio parahaemolyticus (V. parahaemolyticus) is a major challenge due to its significant risk to food safety and human health. Herein, we developed a phagomagnetic separation-ATP bioluminescence (PhMS-BL) assay based on phage VPHZ6 for rapid and sensitive detection of viable V.
View Article and Find Full Text PDFIncreasing data suggested that histone methylation modification plays an important role in regulating biosynthesis of secondary metabolites (SMs). Monascus spp. have been applied to produce hypolipidemic drug lovastatin (also called monacolin K, MK) and edible Monascus-type azaphilone pigments (MonAzPs).
View Article and Find Full Text PDFMonascus spp. can produce a variety of beneficial metabolites widely used in food and pharmaceutical industries. However, some Monascus species contain the complete gene cluster responsible for citrinin biosynthesis, which raises our concerns about the safety of their fermented products.
View Article and Find Full Text PDFAims: In this study, Mrhst4, encoding a member of NAD+-dependent histone deacetylase (HDAC), was deleted to evaluate its regulation on the production of Monascus azaphilone pigments (MonAzPs) and mycotoxin, as well as the developmental process in Monascusruber.
Methods And Results: Agrobacterium tumefaciens-mediated transformation was applied in this study to generate the Mrhst4 null strain. Mrhst4-deleted strain did not display obvious differences in the sexual and asexual reproduction, colonial morphology, and micro-morphology.
red pigments (MRPs), which are a kind of natural colorant produced by spp., are widely used in the food and health supplements industry but are not very stable during processing and storage. Thus, MRPs were embedded into liposome membranes using a thin-film ultrasonic method to improve stability in this study.
View Article and Find Full Text PDFEsa1 has been proven to be an important histone acetyltransferase involved in the regulation of growth and metabolism. Monascus spp. with nearly 2000 years of edible history in East Asian countries can produce a variety of polyketides.
View Article and Find Full Text PDFRecently, using bacteriophages as new molecular probes in reliable platforms for the detection of bacterial pathogens has attracted more and more increasing attentions. In this paper, a novel isolated Myoviridae bacteriophage SEP37 was covalently immobilized onto gold nanoparticles (AuNPs) modified gold disk electrode (GDE) surfaces using cysteamine (Cys) as a crosslinker. Substrates of GDE-AuNPs-Cys-Phage SEP37 and specific capture of Salmonella cells had been characterized using scanning electron microscopy (SEM) separately.
View Article and Find Full Text PDFMonascus species are the producers of Monascus azaphilone pigments (MonAzPs) and lipid-lowering component Monacolin K, which have been widely used as food colorant and health products. In this study, silent information regulator 2 (Sir2) homolog (MrSir2) was characterized, and its impacts on the development and MonAzPs production of Monascus ruber were evaluated. Enzyme activity test in vitro showed that MrSir2 was an NAD-dependent histone deacetylase.
View Article and Find Full Text PDFAims: Monascus spp. are valuable industrial fungi for producing beneficial compounds. Because sporulation is often coupled with the production of secondary metabolites, the current study was performed to investigate how Mrada3 regulated asexual and sexual development and the production of edible pigments and mycotoxin.
View Article and Find Full Text PDFJ Fungi (Basel)
February 2022
as the dominant fungi species of Fuzhuan brick tea in China, can produce multitudinous secondary metabolites (SMs) with various bioactivities. Polyketides are a very important class of SMs found in . and have gained extensive attention in recent years due to their remarkable diversity of structures and multiple functions.
View Article and Find Full Text PDFstrains are widely applied to yield a cholesterol synthesis inhibitor monacolin K (MK), also called lovastatin (LOV). However, the mechanism of MK production by strains is still unclear. In this study, we firstly confirmed four strains, MS-1, YDJ-1, YDJ-2, and K104061, isolated from commercial MK products as and compared their abilities to produce MK in solid-state and liquid-state cultures.
View Article and Find Full Text PDFDespite the important biological activities of natural product naphthoquinones, the biosynthetic pathways of and resistance mechanisms against such compounds remain poorly understood in fungi. Here, we report that the genes responsible for the biosynthesis of naphthoquinones (monasones) reside within the gene cluster for azaphilone pigments (MonAzPs). We elucidate the biosynthetic pathway of monasones by a combination of comparative genome analysis, gene knockouts, heterologous coexpression, and and enzymatic reactions to show that this pathway branches from the first polyketide intermediate of MonAzPs.
View Article and Find Full Text PDF