Publications by authors named "Yanchao Bi"

In recent decades, converging evidence has reached a consensus that human speech production is carried out by large-scale hierarchical network comprising both language-selective and domain-general systems. However, it remains unclear how these systems interact during speech production and the specific contributions of their component regions. By utilizing a series of meta-analytic approaches based on various language tasks, we dissociated four major systems in this study: domain-general, high-level language, motor-perception, and speech-control systems.

View Article and Find Full Text PDF

Infectious diseases have been major causes of death throughout human history and are assumed to broadly affect human psychology. However, whether and how conceptual processing, an internal world model central to various cognitive processes, adapts to such salient stress variables remains largely unknown. To address this, we conducted three studies examining the relationship between pathogen severity and semantic space, probed through the main neurocognitive semantic dimensions revealed by large-scale text analyses: one cross-cultural study (across 43 countries) and two historical studies (over the past 100 years).

View Article and Find Full Text PDF

Animals guide their behaviors through internal representations of the world in the brain. We aimed to understand how the macaque brain stores such general world knowledge, focusing on object color knowledge. Three functional magnetic resonance imaging (fMRI) experiments were conducted in macaque monkeys: viewing chromatic and achromatic gratings, viewing grayscale images of their familiar fruits and vegetables (e.

View Article and Find Full Text PDF
Article Synopsis
  • Tulving defined semantic memory as a large storehouse of meanings crucial for language and cognition, prompting various fields to research it with unique methods and terms.
  • The varied interpretations of key concepts like "concept" across disciplines create confusion, contributing to the replication crisis in psychology and impacting communication and theory development.
  • To address these issues, a multidisciplinary semantic glossary is being developed to provide clear definitions and foster shared understanding among researchers while acknowledging the challenges of bias and prescriptiveness.
View Article and Find Full Text PDF

Language is an evolutionarily salient faculty for humans that relies on a distributed brain network spanning across frontal, temporal, parietal, and subcortical regions. To understand whether the complex language network shares common or distinct genetic mechanisms, we examined the relationships between the genetic effects underlying the brain responses to language and a set of object domains that have been suggested to coevolve with language: tools, faces (indicating social), and body parts (indicating social and gesturing). Analyzing the twin datasets released by the Human Connectome Project that had functional magnetic resonance imaging data from human twin subjects (monozygotic and dizygotic) undergoing language and working memory tasks contrasting multiple object domains (198 females and 144 males for the language task; 192 females and 142 males for the working memory task), we identified a set of cortical regions in the frontal and temporal cortices and subcortical regions whose activity to language was significantly genetically influenced.

View Article and Find Full Text PDF

Shape is a property that could be perceived by vision and touch, and is classically considered to be supramodal. While there is mounting evidence for the shared cognitive and neural representation space between visual and tactile shape, previous research tended to rely on dissimilarity structures between objects and had not examined the detailed properties of shape representation in the absence of vision. To address this gap, we conducted three explicit object shape knowledge production experiments with congenitally blind and sighted participants, who were asked to produce verbal features, 3D clay models, and 2D drawings of familiar objects with varying levels of tactile exposure, including tools, large nonmanipulable objects, and animals.

View Article and Find Full Text PDF

Given the increasing presence of robots in everyday environments and the significant challenge posed by social interactions with robots, it is crucial to gain a deeper understanding into the social evaluations of robots. One potentially effective approach to comprehend the fundamental processes underlying controlled and automatic evaluations of robots is to probe brain response to different perception levels of robot-related stimuli. Here, we investigate controlled and automatic evaluations of robots based on brain responses during viewing of suprathreshold (duration: 200 ms) and subthreshold (duration: 17 ms) humanoid robot stimuli.

View Article and Find Full Text PDF

Sense of agency (SoA) is the sensation that self-actions lead to ensuing perceptual consequences. The prospective mechanism emphasizes that SoA arises from motor prediction and its comparison with actual action outcomes, while the reconstructive mechanism stresses that SoA emerges from retrospective causal processing about the action outcomes. Consistent with the prospective mechanism, motor planning regions were identified by neuroimaging studies using the temporal binding (TB) effect, a behavioral measure often linked to implicit SoA.

View Article and Find Full Text PDF

Congenital sensory deprivation induces significant changes in the structural and functional organisation of the brain. These are well-characterised by cross-modal plasticity, in which deprived cortical areas are recruited to process information from non-affected sensory modalities, as well as by other neuroplastic alterations within regions dedicated to the remaining senses. Here, we analysed visual and auditory networks of congenitally deaf and hearing individuals during different visual tasks to assess changes in network community structure and connectivity patterns due to congenital deafness.

View Article and Find Full Text PDF

The lifespan growth of the functional connectome remains unknown. Here, we assemble task-free functional and structural magnetic resonance imaging data from 33,250 individuals aged 32 postmenstrual weeks to 80 years from 132 global sites. We report critical inflection points in the nonlinear growth curves of the global mean and variance of the connectome, peaking in the late fourth and late third decades of life, respectively.

View Article and Find Full Text PDF

Language and social cognition are traditionally studied as separate cognitive domains, yet accumulative studies reveal overlapping neural correlates at the left ventral temporoparietal junction (vTPJ) and the left lateral anterior temporal lobe (lATL), which have been attributed to sentence processing and social concept activation. We propose a common cognitive component underlying both effects: social-semantic working memory. We confirmed two key predictions of our hypothesis using functional MRI.

View Article and Find Full Text PDF

Primary visual cortex (V1) is generally thought of as a low-level sensory area that primarily processes basic visual features. Although there is evidence for multisensory effects on its activity, these are typically found for the processing of simple sounds and their properties, for example spatially or temporally-congruent simple sounds. However, in congenitally blind individuals, V1 is involved in language processing, with no evidence of major changes in anatomical connectivity that could explain this seemingly drastic functional change.

View Article and Find Full Text PDF

Speech comprehension is a complex process involving multiple stages, such as decoding of phonetic units, recognizing words, and understanding sentences and passages. In this study, we identify cortical networks beyond basic phonetic processing using a novel passage learning paradigm. Participants learn to comprehend a story composed of syllables of their native language, but containing unfamiliar vocabulary and syntax.

View Article and Find Full Text PDF

Shape processing, whether by seeing or touching, is pivotal to object recognition and manipulation. Although the low-level signals are initially processed by different modality-specific neural circuits, multimodal responses to object shapes have been reported along both ventral and dorsal visual pathways. To understand this transitional process, we conducted visual and haptic shape perception fMRI experiments to test basic shape features (i.

View Article and Find Full Text PDF

One signature of the human brain is its ability to derive knowledge from language inputs, in addition to nonlinguistic sensory channels such as vision and touch. How does human language experience modulate the mechanism by which semantic knowledge is stored in the human brain? We investigated this question using a unique human model with varying amounts and qualities of early language exposure: early deaf adults who were born to hearing parents and had reduced early exposure and delayed acquisition of any natural human language (speech or sign), with early deaf adults who acquired sign language from birth as the control group that matches on nonlinguistic sensory experiences. Neural responses in a semantic judgment task with 90 written words that were familiar to both groups were measured using fMRI.

View Article and Find Full Text PDF

The dynamic relationship between the neural representation of action word semantics and specific sensorimotor experience remains controversial. Here, we temporarily altered human subjects' sensorimotor experience in a 15-day head-down tilt bed rest setting, a ground-based analog of microgravity that disproportionally affects sensorimotor experiences of the lower limbs, and examined whether such effector-dependent activity deprivation specifically affected the neural processes of comprehending verbs of lower-limb actions (e.g.

View Article and Find Full Text PDF

Distributed cortical regions show differential responses to visual objects belonging to different domains varying by animacy (e.g., animals vs tools), yet it remains unclear whether this is an organization principle also applying to the subcortical structures.

View Article and Find Full Text PDF

Tool understanding and use are supported by a dedicated left-lateralized, intrinsically connected network in the human adult brain. To examine this network's phylogenetic and ontogenetic origins, we compared resting-state functional connectivity (rsFC) among regions subserving tool processing in human adults to rsFC among homologous regions in human neonates and macaque monkeys (adolescent and mature). These homologous regions formed an intrinsic network in human neonates, but not in macaques.

View Article and Find Full Text PDF

Visual cortex organization is highly consistent across individuals. But to what degree does this consistency depend on life experience, in particular sensory experience? In this study, we asked whether visual cortex reorganization in congenital blindness results in connectivity patterns that are particularly variable across individuals, focusing on resting-state functional connectivity (RSFC) patterns from the primary visual cortex. We show that the absence of shared visual experience results in more variable RSFC patterns across blind individuals than sighted controls.

View Article and Find Full Text PDF

A critical way for humans to acquire information is through language, yet whether and how language experience drives specific neural semantic representations is still poorly understood. We considered statistical properties captured by 3 different computational principles of language (simple co-occurrence, network-(graph)-topological relations, and neural-network-vector-embedding relations) and tested the extent to which they can explain the neural patterns of semantic representations, measured by 2 functional magnetic resonance imaging experiments that shared common semantic processes. Distinct graph-topological word relations, and not simple co-occurrence or neural-network-vector-embedding relations, had unique explanatory power for the neural patterns in the anterior temporal lobe (capturing graph-common-neighbors), inferior frontal gyrus, and posterior middle/inferior temporal gyrus (capturing graph-shortest-path).

View Article and Find Full Text PDF

Events are typically composed of at least actions and entities. Both actions and entities have been shown to be represented by neural structures respecting domain organizations in the brain, including those of social/animate (face and body; person-directed action) versus inanimate (man-made object or tool; object-directed action) concepts. It is unclear whether the brain combines actions and entities into events in a (relative) domain-specific fashion or via domain-general mechanisms in regions that have been shown to support semantic and syntactic composition.

View Article and Find Full Text PDF

In high-level visual areas in the human brain, preference for inanimate objects is observed regardless of stimulation modality (visual/auditory/tactile) and individual's visual experience (sighted/blind) whereas preference for animate entities seems robust mainly in the visual modality. Here, we test a hypothesis explaining this domain difference: Object representations can be activated through nonvisual stimulation when their shapes are systematically related to action system representations, a quality typical of most inanimate objects but of only specific animate entities. We studied functional magnetic resonance imaging activations in congenitally blind and sighted individuals listening to animal, object, and human sounds.

View Article and Find Full Text PDF

An essential aspect of human cognition is supported by a rich reservoir of abstract concepts without tangible external referents (e.g., "honor", "relationship", "direction").

View Article and Find Full Text PDF

Humans primarily rely on language to communicate, on the basis of a shared understanding of the basic building blocks of communication: words. Do we mean the same things when we use the same words? Although cognitive neural research on semantics has revealed the common principles of word-meaning representation, the factors underlying the potential individual variations in word meanings are unknown. Here, we empirically characterized the intersubject consistency of 90 words across 20 adult subjects (10 female) using both behavioral measures (rating-based semantic-relationship patterns) and neuroimaging measures (word-evoked brain activity patterns).

View Article and Find Full Text PDF

How does the human brain code knowledge about the world? While disciplines such as artificial intelligence represent world knowledge based on human language, neurocognitive models of knowledge have been dominated by sensory embodiment, in which knowledge is derived from sensory/motor experience and supported by high-level sensory/motor and association cortices. The neural correlates of an alternative disembodied symbolic system had previously been difficult to establish. A recent line of studies exploring knowledge about visual properties, such as color, in visually deprived individuals converge to provide positive, compelling evidence for non-sensory, language-derived, knowledge representation in dorsal anterior temporal lobe and extended language network, in addition to the sensory-derived representations, leading to a sketch of a dual-coding knowledge neural framework.

View Article and Find Full Text PDF