It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique.
View Article and Find Full Text PDFHumic acids (HAs), kinds of valuable active carbon, are critical for improving soil fertility. However, the majority of soils are poor in HAs, arousing the development of artificial HAs. In this study, two iron-based catalysts (nanoscale iron trioxide (nFeO) and FeCl) were used to catalyze the hydrothermal humification of waste corn straw.
View Article and Find Full Text PDFAccording to its characteristics, biochar originating originating from biomass is accepted as a multifunctional carbon material that supports a wide range of applications. With the successfully used in reducing nitrate and adsorbing ammonium, the mechanism of biochar for nitrogen fixation in long-term brought increasing attention. However, there is a lack of analysis of the NH-N adsorption capacity of biochar after aging treatments.
View Article and Find Full Text PDF