Publications by authors named "Yanbu Wang"

In the domain of using DL-based methods in medical and healthcare prediction systems, the utilization of state-of-the-art deep learning (DL) methodologies assumes paramount significance. DL has attained remarkable achievements across diverse domains, rendering its efficacy particularly noteworthy in this context. The integration of DL with health and medical prediction systems enables real-time analysis of vast and intricate datasets, yielding insights that significantly enhance healthcare outcomes and operational efficiency in the industry.

View Article and Find Full Text PDF

The weak adhesion between nanocarriers and the intestinal mucosa was one of the main reasons caused the failure in oral delivery. Inspired by the "antiskid tires" with complex chiral patterns, mesoporous silica nanoparticles AT-R@CMSN exhibiting geometrical chiral structure were designed to improve the surface/interface roughness in nanoscale, and employed as the hosting system for insoluble drugs nimesulide (NMS) and ibuprofen (IBU). Once performing the delivery tasks, AT-R@CMSN with rigid skeleton protected the loaded drug and reduced the irritation of drug on gastrointestinal tract (GIT), while their porous structure deprived drug crystal and improved drug release.

View Article and Find Full Text PDF

In the microscale, bacteria with helical body shapes have been reported to yield advantages in many bio-processes. In the human society, there are also wisdoms in knowing how to recognize and make use of helical shapes with multi-functionality. Herein, we designed atypical chiral mesoporous silica nano-screws (CMSWs) with ideal topological structures (, small section area, relative rough surface, screw-like body with three-dimension chirality) and demonstrated that CMSWs displayed enhanced bio-adhesion, mucus-penetration and cellular uptake (contributed by the macropinocytosis and caveolae-mediated endocytosis pathways) abilities compared to the chiral mesoporous silica nanospheres (CMSSs) and chiral mesoporous silica nanorods (CMSRs), achieving extended retention duration in the gastrointestinal (GI) tract and superior adsorption in the blood circulation (up to 2.

View Article and Find Full Text PDF