Recent experimental studies have discovered diverse spatial properties, such as head direction tuning and egocentric tuning, of neurons in the postrhinal cortex (POR) and revealed how the POR spatial representation is distinct from the retrosplenial cortex (RSC). However, how these spatial properties of POR neurons emerge is unknown, and the cause of distinct cortical spatial representations is also unclear. Here, we build a learning model of POR based on the pathway from the superior colliculus (SC) that has been shown to have motion processing within the visual input.
View Article and Find Full Text PDFThe use of spatial maps to navigate through the world requires a complex ongoing transformation of egocentric views of the environment into position within the allocentric map. Recent research has discovered neurons in retrosplenial cortex and other structures that could mediate the transformation from egocentric views to allocentric views. These egocentric boundary cells respond to the egocentric direction and distance of barriers relative to an animal's point of view.
View Article and Find Full Text PDFIt is well known that hippocampal place cells have spatiotemporal properties, namely, that they generally respond to a single spatial location of a small environment, and they also display the temporal response property of theta phase precession, namely, that the phase of spiking relative to the theta wave shifts from the late phase to early phase as the animal crosses the place field. Grid cells in Layer II of the medial entorhinal cortex (MEC) also have spatiotemporal properties similar to hippocampal place cells, except that grid cells respond to multiple spatial locations that form a hexagonal pattern. Because the EC is the upstream area that projects strongly to the hippocampus, a number of EC-hippocampus learning models have been proposed to explain how the spatial receptive field properties of place cells emerge via synaptic plasticity.
View Article and Find Full Text PDFCells in the entorhinal cortex (EC) contain rich spatial information and project strongly to the hippocampus where a cognitive map is supposedly created. These cells range from cells with structured spatial selectivity, such as grid cells in the medial EC (MEC) that are selective to an array of spatial locations that form a hexagonal grid, to weakly spatial cells, such as non-grid cells in the MEC and lateral EC (LEC) that contain spatial information but have no structured spatial selectivity. However, in a small environment, place cells in the hippocampus are generally selective to a single location of the environment, while granule cells in the dentate gyrus of the hippocampus have multiple discrete firing locations but lack spatial periodicity.
View Article and Find Full Text PDFThere are two distinct classes of cells in the primary visual cortex (V1): simple cells and complex cells. One defining feature of complex cells is their spatial phase invariance; they respond strongly to oriented grating stimuli with a preferred orientation but with a wide range of spatial phases. A classical model of complete spatial phase invariance in complex cells is the energy model, in which the responses are the sum of the squared outputs of two linear spatially phase-shifted filters.
View Article and Find Full Text PDFFront Neural Circuits
January 2020
Increasing evidence supports the hypothesis that the visual system employs a sparse code to represent visual stimuli, where information is encoded in an efficient way by a small population of cells that respond to sensory input at a given time. This includes simple cells in primary visual cortex (V1), which are defined by their linear spatial integration of visual stimuli. Various models of sparse coding have been proposed to explain physiological phenomena observed in simple cells.
View Article and Find Full Text PDF