Background: Alzheimer's disease (AD) is a severe neurological illness causes cognitive decline and mortality if not treated early. However, the current therapeutic modalities are inefficient to manage the cognitive dysfunction of AD. Therefore, in the present manuscript, we have enumerated the pharmacological benefit of Poliumoside in the Streptozotocin-induced cognitive dysfunction in Sprague-Dawley (SD) rats.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2023
A novel ratiometric fluorescence strategy for sulfide ions (S) analysis has been developed using metal-organic framework (MOF)-based nanozyme. NH-Cu-MOF displays blue fluorescence (λem = 435 nm) originating from 2-amino-1,4-benzenedicarboxylic acid ligand. Besides, it possesses oxidase-like activity due to Cu node, which can trigger chromogenic reaction.
View Article and Find Full Text PDFA new fluorescence strategy was described for ratiometric sensing of formaldehyde (FA) with bifunctional MOF, which acted as a fluorescence reporter as well as biomimetic peroxidase. With the assistance of HO, NH-MIL-101 (Fe) catalyzes the oxidation of non-luminescent substrate o-phenylenediamine (OPD) to produce fluorescent product (oxOPD) with the maximum emission at 570 nm. Besides, intrinsic fluorescence of MOF (λem = 445 nm) was quenched by oxOPD through inner filter effect (IFE).
View Article and Find Full Text PDFAn innovative strategy with target-triggered cascade fluorescence recovery of a dual-nanoquencher system was developed to detect ascorbic acid (AA). Herein, manganese dioxide (MnO) nanosheets and gold nanoparticles (AuNPs) were used as nanoquenchers simultaneously. Owing to their synergistic effects, the fluorescence of 2,3-diaminophenazine (DAP) was decreased efficiently, thus minimizing the background fluorescence.
View Article and Find Full Text PDF() can survive at low pH, and it has been widely used as an alternative to antibiotics for the improvement of feed efficiency and animal health in monogastrics. A recent study suggested that the improved ruminal fermentation with supplementing is may be associated with increasing the abundance of rumen microbiota in Holstein heifers, as ruminal pH plays a key role in rumen microbiota and the probiotics are often active in a dose-dependent manner. The objective of this study was to determine the effects of increasing the doses of on gas production (GP) kinetics, dry matter disappearance (DMD), fermentation characteristics, and rumen microbiota using a high grain substrate in batch culture varying with media pH levels.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2022
A sensitive fluorescence sensing platform consisting of manganese dioxide nanosheets (MnO) and gold nanoparticles (AuNPs) as dual nanoquenchers has been constructed to detect isoniazid combined with analyte-triggered cascade reactions. The fluorescence of 2,3-diaminophenazine (DAP) is quenched simultaneously by MnO and AuNPs via inner filter effect. MnO is decomposed by isoniazid to generate Mn, which makes AuNPs aggregated.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) is associated with a range of epithelial and B cell malignancies as well as autoimmune disorders, for which there are still no specific treatments or effective vaccines. Here, we isolate EBV gH/gL-specific antibodies from an EBV-infected individual. One antibody, 1D8, efficiently neutralizes EBV infection of two major target cell types, B cells and epithelial cells.
View Article and Find Full Text PDFThe authors describe novel colorimetric assays for tyrosinase (TYR) and catalase (CAT) based on the substrate-triggered decomposition of MnO nanosheets (NSs). The MnO NSs can act as oxidase mimics that catalyze the oxidation of the substrate tetramethylbenzidine (TMB) to form a blue dye with an absorption maximum at 652 nm. The oxidase-mimicking activity of the MnO NSs is inhibited by dopamine (DA)/hydrogen peroxide (HO) due to their decomposition of the MnO NSs.
View Article and Find Full Text PDFMost neutralizing antibodies against highly pathogenic avian influenza A virus H5N1 recognize the receptor-binding site (RBS) on the globular head domain and the stem of H5N1 hemagglutinin (HA). Through comprehensive analysis of multiple human protective antibodies, we previously identified four vulnerable sites (VS1-VS4) on the globular head domain. Among them, the VS1, occupying the opposite side of the RBS on the same HA, was defined by the epitope of antibody 65C6.
View Article and Find Full Text PDFThe highly pathogenic avian influenza virus H5N1 is a major threat to global public health and therefore a high-priority target of current vaccine development. The receptor-binding site (RBS) on the globular head of hemagglutinin (HA) in the viral envelope is one of the major target sites for antibody recognition against H5N1 and other influenza viruses. Here, we report the identification and characterization of a pair of human RBS-specific antibodies, designated FLD21.
View Article and Find Full Text PDFThe authors describe a molecular beacon-based fluorescent probe for the determination of the cancer drug bleomycin (BLM). The probe was tagged with DNA-templated silver nanoclusters (DNA-AgNCs) and guanine-rich sequences (GRSs) at two terminals serving as signal reporter with a loop. In the absence of the BLM-iron(II) complex [BLM-Fe(II)], the probe has a hairpin shape and displays strong fluorescence because the AgNCs are close to the GRSs.
View Article and Find Full Text PDFEbola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement.
View Article and Find Full Text PDFUnderstanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA.
View Article and Find Full Text PDFA novel biosorbent, polyvinyl alcohol (PVA)-immobilized Phanerochaete chrysosporium, was applied to the bioremediation of composite-polluted wastewater, containing both cadmium and 2,4-dichlorophenol (2,4-DCP). The optimum removal efficiency achieved was 78% for Cd(II) and 95.4% for 2,4-DCP at initial concentrations of 20 mg/L Cd(II) and 40 mg/L 2,4-DCP.
View Article and Find Full Text PDFImmobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles (PTNs) are novel high-value bioremediation materials for adsorbing cadmium and for degrading 2,4-dichlorophenol (2,4-DCP). The real-time changes in H(+) and O2 fluxes were measured using the noninvasive microtest technique (NMT). The H(+) influx increased after the addition of 2,4-DCP, and shifted to efflux following the addition of Cd(2+).
View Article and Find Full Text PDFDespite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3±0.
View Article and Find Full Text PDFIn this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%.
View Article and Find Full Text PDF