Reinforced biofilm structures and dysfunctional neutrophils induced by excessive oxidative stress contribute to the refractoriness of diabetes-related biofilm infections (DRBIs). Herein, in contrast to traditional antibacterial therapies, an immune switchpoint-driven neutrophil immune function conversion strategy based on a deoxyribonuclease I loaded vanadium carbide MXene (DNase-I@V C) nanoregulator is proposed to treat DRBIs via biofilm lysis and redirecting neutrophil functions from NETosis to phagocytosis in diabetes. Owing to its intrinsic superoxide dismutase/catalase-like activities, DNase-I@V C effectively scavenges reactive oxygen species (ROS) in a high oxidative stress microenvironment to maintain the biological activity of DNase-I.
View Article and Find Full Text PDFThis study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients.
View Article and Find Full Text PDFChronic, often intractable, pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain.
View Article and Find Full Text PDFIntroduction: Adoptive cellular therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated promising clinical benefits in several solid tumors, but the efficacy of this therapy might be compromised by the "prone-to-exhaustion" phenotype of TIL and poor persistence in vivo. This calls for a robust expansion process to produce a large number of cells for clinical usage while at the same time maintaining favorable anti-tumor function and memory phenotype. Previous studies showed that the PI3K-AKT signaling pathway plays a key role in the regulation of T cell activation, differentiation and memory formation.
View Article and Find Full Text PDFPeritoneal metastasis is a common issue in the progression of high-grade serous ovarian cancers (HGSOCs), yet the underlying mechanism remains unconfirmed. We demonstrated that ZEB2, the transcription factor of epithelial-mesenchymal transition (EMT), was upregulated in ascites cells from HGSOC patients and in CD133 cancer stem-like cells (CSLCs) from epithelial ovarian cancer (EOC) cell lines. SiRNA-mediated knockdown of ZEB2 in EOC cells decreased the percentage of CSLCs and reduced the colony forming potential, cell invasion capacity and expression of pluripotent genes Oct4 and Nanog.
View Article and Find Full Text PDFBackground: Oligodendrocytes, responsible for axon ensheathment, are critical for central nervous system (CNS) development, function, and diseases. OLIG2 is an important transcription factor (TF) that acts during oligodendrocyte development and performs distinct functions at different stages. Previous studies have shown that lncRNAs (long non-coding RNAs; > 200 bp) have important functions during oligodendrocyte development, but their roles have not been systematically characterized and their regulation is not yet clear.
View Article and Find Full Text PDFMacrophages are essential in innate immunity and are involved in a variety of biological functions. Due to high plasticity, macrophages are polarized in different phenotypes depending on different microenvironments to perform specific functions. Although many studies have focused on macrophage polarization, few have explored the polarization characteristics of macrophages at the subcellular level, even at nanoscale resolution.
View Article and Find Full Text PDFSpinal cord injury (SCI) is one of the most devastating neural injuries without effective therapeutic solutions. Astrocytes are the predominant component of the scar. Understanding the complex contributions of reactive astrocytes to SCI pathophysiologies is fundamentally important for developing therapeutic strategies.
View Article and Find Full Text PDFMouse photoreceptors are electrically coupled via gap junctions, but the relative importance of rod/rod, cone/cone, or rod/cone coupling is unknown. Furthermore, while connexin36 (Cx36) is expressed by cones, the identity of the rod connexin has been controversial. We report that FACS-sorted rods and cones both express but no other connexins.
View Article and Find Full Text PDFBMAL1 is a core component of the mammalian circadian clockwork. Removal of BMAL1 from the retina significantly affects visual information processing in both rod and cone pathways. To identify potential pathways and/or molecules through which BMAL1 alters signal transmission at the cone pedicle, we performed an RNA-seq differential expression analysis between cone-specific Bmal1 knockout cones (cone-Bmal1 ) and wild-type (WT) cones.
View Article and Find Full Text PDFSystematic study of the regulatory mechanisms of Hematopoietic Stem Cell and Progenitor Cell (HSPC) self-renewal is fundamentally important for understanding hematopoiesis and for manipulating HSPCs for therapeutic purposes. Previously, we have characterized gene expression and identified important transcription factors (TFs) regulating the switch between self-renewal and differentiation in a multipotent Hematopoietic Progenitor Cell (HPC) line, EML (Erythroid, Myeloid, and Lymphoid) cells. Herein, we report binding maps for additional TFs (SOX4 and STAT3) by using chromatin immunoprecipitation (ChIP)-Sequencing, to address the underlying mechanisms regulating self-renewal properties of lineage-CD34+ subpopulation (Lin-CD34+ EML cells).
View Article and Find Full Text PDFIn mammalian cells, gene transcription is regulated in a cell type specific manner by the interactions of transcriptional factors with genomic DNA. Lineage-specific transcription factors are considered to play essential roles in cell specification and differentiation during development. ChIP coupled with high-throughput DNA sequencing (ChIP-seq) is widely used to analyze genome-wide binding sites of transcription factors (or its associated complex) to genomic DNA.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2018
Micro RNAs (miRNAs) are small non-coding RNAs which are 19-24 nucleotides in length. MiRNAs play a vital role in the whole process of tumour development, but how they influence the tumourigenecity of epithelial ovarian cancer (EOC)cells is rarely researched. In our study, it was verified that miR-628-5p decreased the stem like cell percentage of EOC cells by inducing their apoptosis.
View Article and Find Full Text PDFPeriprosthetic joint infection (PJI) is a devastating condition and spp. are the predominant pathogens responsible, particularly coagulase-negative staphylococci (CoNS) and . The aim of the present systematic review was to evaluate the distribution characteristics of specific spp.
View Article and Find Full Text PDFThe lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming).
View Article and Find Full Text PDFSensors (Basel)
November 2016
The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements', such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges.
View Article and Find Full Text PDFNeuroscientist
December 2016
The composition and function of the central nervous system (CNS) is extremely complex. In addition to hundreds of subtypes of neurons, other cell types, including glia (astrocytes, oligodendrocytes, and microglia) and vascular cells (endothelial cells and pericytes) also play important roles in CNS function. Such heterogeneity makes the study of gene transcription in CNS challenging.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs.
View Article and Find Full Text PDFEnolase belongs to glycolytic enzymes with moonlighting functions. The role of enolase in Taenia species is still poorly understood. In this study, the full length of cDNA encoding for Taenia pisiformis alpha-enolase (Tpeno) was cloned from larval parasites and soluble recombinant Tpeno protein (rTpeno) was produced.
View Article and Find Full Text PDFThe information about the crystal structure of porcine reproductive and respiratory syndrome virus (PRRSV) leader protease nsp1α is available to analyze the roles of tRNA abundance of pigs and codon usage of the nsp1 α gene in the formation of this protease. The effects of tRNA abundance of the pigs and the synonymous codon usage and the context-dependent codon bias (CDCB) of the nsp1 α on shaping the specific folding units (α-helix, β-strand, and the coil) in the nsp1α were analyzed based on the structural information about this protease from protein data bank (PDB: 3IFU) and the nsp1 α of the 191 PRRSV strains. By mapping the overall tRNA abundance along the nsp1 α, we found that there is no link between the fluctuation of the overall tRNA abundance and the specific folding units in the nsp1α, and the low translation speed of ribosome caused by the tRNA abundance exists in the nsp1 α.
View Article and Find Full Text PDFThe adjuvant effects of Lactobacillus acidophilus on DNA vaccination are not fully understood. It has been hypothesized that swine-derived Lactobacillus acidophilus SW1 (LASW1) could function as an immune adjuvant to enhance antigen-specific immune responses after foot-and-mouth disease (FMD) DNA vaccination in mice. To evaluate the effect of oral LASW1 on the immune response to a DNA vaccine (pRC/CMV-vp1) harboring FMD VP1 gene, anti-FMDV antibody and its isotypes, T-cell proliferation, and cytokine detection were investigated.
View Article and Find Full Text PDFJ Microbiol Immunol Infect
April 2015
Minigenomes (MGs) are complementary DNAs of the synthetic analogs of genomic RNA. MGs are widely used to study the life cycle of the Paramyxoviridae family of viruses. MG-based studies have provided valuable insights into the mechanisms of viral replication and transcription in this family, including the roles of viral proteins, the location and boundaries of the cis-acting elements, the functional domains of trans-acting proteins, techniques for the measurement of neutralizing antibody, virus-host interactions, and the structure and function of viral RNA.
View Article and Find Full Text PDFThe 3C protease of foot-and-mouth disease virus (FMDV) has a conserved amino acid sequence and is responsible for most cleavage in the viral polyprotein. The effects of the synonymous codon usage of FMDV 3C gene and tRNA abundance of the hosts on shaping different folding units (α-helix, β-strand and the coil) in the 3C protease were analyzed based on the structural information of the FMDV 3C protease from Protein Data Bank (PDB: 2BHG) and 210 genes of 3C for all serotypes of FMDV. The strong correlation between some codons usage and the specific folding unit in the FMDV 3C protease is found.
View Article and Find Full Text PDFBackground: The laminin receptors (LRs) play important roles in cell adhesion to the extracellular matrix, certain cell-cell adhesions, and the activation of many intracellular signaling pathways. Studies of LRs have primarily focused on mammals, while few studies of LRs in marine invertebrates have been reported. The functions of LRs in marine bivalve species are still unclear.
View Article and Find Full Text PDF