Publications by authors named "Yanan Pi"

Objective: Growing evidence indicates that F-box and leucine-rich repeat protein 6 (FBXL6) is associated with the progression of various cancers, including gastric cancer, hepatocellular carcinoma, and colorectal cancer. This study focuses on the prognostic significance of FBXL6 in OC.

Methods: Differential levels of FBXL6 in multiple cancers were evaluated using the TCGA and GSE26712 databases.

View Article and Find Full Text PDF

BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone.

View Article and Find Full Text PDF

Receptor for activated C kinase 1 (RACK1) has been confirmed to take part in multiple biological events and the mechanism supporting abnormal RACK1 expression in ovarian cancer (OC) remains to be characterized. Here, we identified Smad ubiquitin regulatory factor 2 (SMURF2) as a bona fide E3 ligase of RACK1 in OC. SMURF2 effectively added the K6, K33 and K48 ubiquitin chains to the RACK1, resulting in polyubiquitination and instability of RACK1.

View Article and Find Full Text PDF

Notch is a fascinating signaling pathway. It is extensively involved in tumor growth, cancer stem cells, metastasis, and treatment resistance and plays important roles in metabolic regulation, tumor microenvironment, and tumor immunity. However, the role of Notch in ovarian cancer (OC) has yet to be fully understood.

View Article and Find Full Text PDF

Cervical cancer (CC) that is caused by high-risk human papillomavirus (HPV) remains a significant public health problem worldwide. HPV integration sites can be silent or actively transcribed, leading to the production of viral-host fusion transcripts. Herein, we demonstrate that only productive HPV integration sites were nonrandomly distributed across both viral and host genomes, suggesting that productive integration sites are under selection and likely to contribute to CC pathophysiology.

View Article and Find Full Text PDF

Cancer cells typically exhibit a tightly regulated program of metabolic plasticity and epigenetic remodeling to meet the demand of uncontrolled cell proliferation. The metabolic-epigenetic axis has recently become an increasingly hot topic in carcinogenesis and offers new avenues for innovative and personalized cancer treatment strategies. Nicotinamide -methyltransferase (NNMT) is a metabolic enzyme involved in controlling methylation potential, impacting DNA and histone epigenetic modification.

View Article and Find Full Text PDF

Background: This study aimed to establish a novel quantification system of ferroptosis patterns and comprehensively analyze the relationship between ferroptosis score (FS) and the immune cell infiltration (ICI) characterization, tumor mutation burden (TMB), prognosis, and therapeutic sensitivity in left-sided and right-sided colon cancers (LCCs and RCCs, respectively).

Methods: We comprehensively evaluated the ferroptosis patterns in 444 LCCs and RCCs based on 59 ferroptosis-related genes (FRGs). The FS was constructed to quantify ferroptosis patterns by using principal component analysis algorithms.

View Article and Find Full Text PDF

Background: Cervical cancer (CC) is the leading cause of cancer-related death in women. A limited number of studies have investigated whether immune-prognostic features can be used to predict the prognosis of CC. This study aimed to develop an improved prognostic risk scoring model (PRSM) for CC based on immune-related genes (IRGs) to predict survival and determine the key prognostic IRGs.

View Article and Find Full Text PDF

Cancer immunotherapy (CIT) is considered a revolutionary advance in the fight against cancer. The complexity of the immune microenvironment determines the success or failure of CIT. Long non-coding RNA (lncRNA) is an extremely versatile molecule that can interact with RNA, DNA, or proteins to promote or inhibit the expression of protein-coding genes.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription.

View Article and Find Full Text PDF

Background: Cervical cancer is one of the most common types of gynecological malignancies worldwide. This study aims to develop an immune signature to predict survival in cervical cancer.

Method: The gene expression data of 296 patients with cervical cancer from The Cancer Genome Atlas database (TCGA) and immune-related genes from the Immunology Database and Analysis Portal () database were included in this study.

View Article and Find Full Text PDF

Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) as the most excellent anticancer theranostic nanoparticles were synthesized through efficient, simple, and green synthesis method using plant extracts and they are widely characterized by several techniques including ultraviolet-visible (UV) spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectrometers (EDS), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. From the AuNPs synthesized by extracts, it was discovered that particle size around 50 nm, which is admirable nano dimension, was achieved by plant-mediated synthesis. After characterization of these nanoparticles, they performed as anticancer activity against lung cancer cell lines (A549).

View Article and Find Full Text PDF