Background: the mortality associated with severe malaria due to Plasmodiun falciparum remains high despite improvements in malaria management. Case prensentation: this case series aims to describe the efficacy and safety of the exchange transfusion combined with artesunate (ET-AS) regimen in severe P. falciparum malaria.
View Article and Find Full Text PDFPurpose: Immune thrombocytopenia (ITP) is an autoimmune disease characterized by accelerated platelet clearance. Gut dysbiosis was associated with its pathogenesis, but the underlying mechanisms have not been fully elucidated. Patients with ITP exhibit varying degrees of responsiveness to corticosteroid treatment.
View Article and Find Full Text PDFBackground And Aim: Platelets are an able regulator of CD4 T cell immunity. Herein, the mechanisms underlying platelet-regulated effector responses of naïve CD4 T (Tn) cells were investigated.
Methods: Platelet-Tn cell co-cultures of human cells, genetically modified murine models, and high-throughput bioinformatic analyses were combined to elucidate molecular mechanisms of platelet-dependent regulation.
Objective: Vascular endothelial growth factor (VEGF), apart from its predominant roles in angiogenesis, can enhance cancer cell proliferation, but its mechanisms remain elusive. The purpose of the present study was therefore to identify how VEGF regulates cancer cell proliferation.
Methods: VEGF effects on cancer cell proliferation were investigated with the VEGF receptor 2 inhibitor, Ki8751, and the breast cancer cell lines, MCF-7 and MDA-MB-231, using flow cytometry, mass spectrometry, immunoblotting, and confocal microscopy.
Primary immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder. Monocytes and macrophages are the major cells involved in autoantibody-mediated platelet clearance in ITP. In the present study, we found increased percentages of peripheral blood proinflammatory CD16 monocytes and elevated frequencies of splenic tumor necrosis factor-α (TNF-α)-expressing macrophages in ITP patients compared with healthy controls.
View Article and Find Full Text PDFBackground: Cell metabolism drives T cell functions, while platelets regulate overall CD4 T cell immune responses.
Objective: To investigate if platelets influence cell metabolism and thus regulate CD4 T effector memory cell (Tem) responses.
Methods: Human CD4 Tem cells were activated with αCD3/αCD28 and cultured without or with platelets or platelet-derived mediators.
The binding of programmed death 1 (PD-1) to its ligands PD-L1 and PD-L2 on antigen-presenting cells turns off autoreactive T cells and induces peripheral tolerance. Aberrant PD-1/PD-L signalling could result in a breakdown of peripheral tolerance and lead to autoimmune diseases. In this study, we detected PD-1 and PD-L expression on T cells and dendritic cells (DCs) in immune thrombocytopenia (ITP) patients with active disease by flow cytometry.
View Article and Find Full Text PDFIn addition to antiplatelet autoantibodies, CD8(+) cytotoxic T lymphocytes (CTLs) play an important role in the increased platelet destruction in immune thrombocytopenia (ITP). Recent studies have highlighted that platelet desialylation leads to platelet clearance via hepatocyte asialoglycoprotein receptors (ASGPRs). Whether CD8(+) T cells induce platelet desialylation in ITP remains unclear.
View Article and Find Full Text PDFImpaired megakaryocyte maturation and insufficient platelet production have been shown to participate in the pathogenesis of immune thrombocytopenia (ITP). Our previous study demonstrated that low expression of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in megakaryocytes contributed to impaired platelet production in ITP. Decitabine (DAC), a demethylating agent, is known to promote cell differentiation and maturation at low doses.
View Article and Find Full Text PDFThalidomide (THD) is an immunomodulatory agent used to treat immune-mediated diseases. Immune thrombocytopenia (ITP) is an autoimmune disorder in which impaired mesenchymal stem cells (MSCs) are potentially involved. We demonstrated that MSCs in ITP patients had reduced proliferative capacity and lost their immunosuppressive function, which could be corrected with THD treatment.
View Article and Find Full Text PDFIntroduction: Indoleamine 2,3-dioxygenase (IDO) can promote peripheral immune tolerance and control autoimmune responses through tryptophan catabolism. Tryptophanyl-tRNA synthetase (TTS) can protect T cells from IDO-mediated cell injury. Impaired IDO-mediated tryptophan catabolism has been observed in some autoimmune diseases.
View Article and Find Full Text PDF