Publications by authors named "Yana V Miteva"

Unlabelled: The seven human sirtuins are a family of ubiquitously expressed and evolutionarily conserved NAD(+)-dependent deacylases/mono-ADP ribosyltransferases that regulate numerous cellular and organismal functions, including metabolism, cell cycle, and longevity. Here, we report the discovery that all seven sirtuins have broad-range antiviral properties. We demonstrate that small interfering RNA (siRNA)-mediated knockdown of individual sirtuins and drug-mediated inhibition of sirtuin enzymatic activity increase the production of virus progeny in infected human cells.

View Article and Find Full Text PDF

Sirtuin 6 (SIRT6), a member of the mammalian sirtuin family, is a nuclear deacetylase with substrate-specific NAD(+)-dependent activity. SIRT6 has emerged as a critical regulator of diverse processes, including DNA repair, gene expression, telomere maintenance, and metabolism. However, our knowledge regarding its interactions and regulation remains limited.

View Article and Find Full Text PDF

Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited.

View Article and Find Full Text PDF

The epicardium is a mesothelial cell layer essential for vertebrate heart development and pertinent for cardiac repair post-injury in the adult. The epicardium initially forms from a dynamic precursor structure, the proepicardial organ, from which cells migrate onto the heart surface. During the initial stage of epicardial development crucial epicardial-derived cell lineages are thought to be determined.

View Article and Find Full Text PDF