Publications by authors named "Yana Geng"

Hepatic stellate cells (HSCs) have a central pathogenetic role in the development of liver fibrosis. However, their fibrosis-independent and homeostatic functions remain poorly understood. Here we demonstrate that genetic depletion of HSCs changes WNT activity and zonation of hepatocytes, leading to marked alterations in liver regeneration, cytochrome P450 metabolism and injury.

View Article and Find Full Text PDF

Liver fibrosis is an exaggerated wound healing response defined by the excessive accumulation of extracellular matrix. This study investigated the antifibrotic potential of naringenin (NRG), asiatic acid (AA), and icariin (ICA) using murine and human precision-cut liver slices (PCLS). These natural products have shown promise in animal models, but human data are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • * The mechanisms behind liver fibrosis are complex and mainly start in liver cells (hepatocytes), but are still not fully understood despite many studies.
  • * A study in the JCI highlights a specific pathway (ATF3/HES1/CEBPA/OPN) that connects signals from hepatocytes to the activation of cells leading to fibrosis, suggesting potential new treatment strategies for liver fibrosis caused by MASLD.
View Article and Find Full Text PDF

Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH.

View Article and Find Full Text PDF

Liver fibrosis is the response of the liver to chronic liver inflammation. The communication between the resident liver macrophages (Kupffer cells [KCs]) and hepatic stellate cells (HSCs) has been mainly viewed as one-directional: from KCs to HSCs with KCs promoting fibrogenesis. However, recent studies indicated that HSCs may function as a hub of intercellular communications.

View Article and Find Full Text PDF

Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g.

View Article and Find Full Text PDF

Background: The number of patients with non-alcoholic fatty liver disease (NAFLD) is rapidly increasing due to the growing epidemic of obesity. Non-alcoholic steatohepatitis (NASH), the inflammatory stage of NAFLD, is characterized by lipid accumulation in hepatocytes, chronic inflammation and hepatocyte cell death. Scopoletin and umbelliferone are coumarin-like molecules and have antioxidant, anti-cancer and anti-inflammatory effects.

View Article and Find Full Text PDF

Background And Purpose: It has been shown that the antidiabetic drug metformin protects hepatocytes against toxicity by various stressors. Chronic or excessive consumption of diclofenac (DF) - a pain-relieving drug, leads to drug-induced liver injury via a mechanism involving mitochondrial damage and ultimately apoptotic death of hepatocytes. However, whether metformin protects against DF-induced toxicity is unknown.

View Article and Find Full Text PDF

Background: Non-alcoholic fatty liver disease (NAFLD), characterized as excess lipid accumulation in the liver which is not due to alcohol use, has emerged as one of the major health problems around the world. The dysregulated lipid metabolism creates a lipotoxic environment which promotes the development of NAFLD, especially the progression from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH).

Purposeand Aim: This review focuses on the mechanisms of lipid accumulation in the liver, with an emphasis on the metabolic fate of free fatty acids (FFAs) in NAFLD and presents an update on the relevant cellular processes/mechanisms that are involved in lipotoxicity.

View Article and Find Full Text PDF

Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH).

View Article and Find Full Text PDF

Lipotoxicity plays a critical role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Hesperetin, a flavonoid derivative, has anti-oxidant, anti-inflammatory and cytoprotective properties. In the present study, we aim to examine whether hesperetin protects against palmitate-induced lipotoxic cell death and to investigate the underlying mechanisms in hepatocytes.

View Article and Find Full Text PDF

Background: The transition from steatosis to non-alcoholic steatohepatitis (NASH) is a key issue in non-alcoholic fatty liver disease (NAFLD). Observations in patients with obstructive sleep apnea syndrome (OSAS) suggest that hypoxia contributes to progression to NASH and liver fibrosis, and the release of extracellular vesicles (EVs) by injured hepatocytes has been implicated in NAFLD progression.

Aim: To evaluate the effects of hypoxia on hepatic pro-fibrotic response and EV release in experimental NAFLD and to assess cellular crosstalk between hepatocytes and human hepatic stellate cells (LX-2).

View Article and Find Full Text PDF

Background: Obstructive sleep apnea syndrome (OSAS) is associated to intermittent hypoxia (IH) and is an aggravating factor of non-alcoholic fatty liver disease (NAFLD). We investigated the effects of hypoxia in both in vitro and in vivo models of NAFLD.

Methods: Primary rat hepatocytes treated with free fatty acids (FFA) were subjected to chemically induced hypoxia (CH) using the hypoxia-inducible factor-1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2).

View Article and Find Full Text PDF

Lipotoxicity causes hepatic cell death and therefore plays an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metformin, a first-line anti-diabetic drug, has shown a potential protective effect against NAFLD. However, the underlying mechanism is still not clear.

View Article and Find Full Text PDF

Oxidative stress and inflammation are proved to be critical for the pathogenesis of diabetes mellitus. Berberine (BBR) is a natural compound isolated from plants such as Coptis chinensis and Hydrastis canadensis and with multiple pharmacological activities. Recent studies showed that BBR had antioxidant and anti-inflammatory activities, which contributed in part to its efficacy against diabetes mellitus.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp666bsse0s5nl2rlqpdb12ttrc4qjda0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once