Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Elucidating the chemical structure and intracellular action mechanisms is still the critical limit for the clinical translation of nanomedicines. Intracellular redox environments originating from cell metabolism are key factors affecting internalized drug efficacy. Herein, we engineer Se-Se/Se-S bond to assemble selenium (Se) nanoclusters (SeClus) with intracellular redox environment-driven selective structure.
View Article and Find Full Text PDFOsteoclast hyperactivation stands as a significant pathological factor contributing to the emergence of bone disorders driven by heightened oxidative stress levels. The modulation of the redox balance to scavenge reactive oxygen species emerges as a viable approach to addressing this concern. Selenoproteins, characterized by selenocysteine (SeCys) as the active center, are crucial for selenium-based antioxidative stress therapy for inflammatory diseases.
View Article and Find Full Text PDFJ Nanobiotechnology
September 2022
Background: Cancer cell membrane-camouflaged nanotechnology for metal complex can enhance its biocompatibility and extend the effective circulation time in body. The ruthenium polypyridyl complex (RuPOP) has extensive antitumor activity, but it still has disadvantages such as poor biocompatibility, lack of targeting, and being easily metabolized by the organism. Cancer cell membranes retain a large number of surface antigens and tumor adhesion molecules CD47, which can be used to camouflage the metal complex and give it tumor homing ability and high biocompatibility.
View Article and Find Full Text PDFWe report here a simple but efficient "ship-in-a-bottle" synthetic strategy for increasing the stability and luminescence performance of LOPs by embedding them into mesoporous silica nanoparticles (MSNs). Three types of hybrid materials, EuL@MSNs, EuL@MSNs-NH and EuL@MSNs-biotin, have been prepared and characterized by FT-IR, TGA, SEM and TEM. Photo-optical measurements confirmed that the photoluminescence quantum yields in water have been greatly improved from 5.
View Article and Find Full Text PDFThe present study was conducted in order to study the detailed molecular mechanism of tumor necrosis factor (TNF)-α in chronic obstructive pulmonary disease (COPD). The rats were treated with cigarette smoke (CS) and lipopolysaccharide (LPS) to establish the COPD model. Next, the changes in lung injury in COPD rats with TNF-α knockdown was tested.
View Article and Find Full Text PDFThere has been long-standing academic interest in the study of ion transport in nanochannel systems, owing to its vast implications in understanding the nature of numerous environmental, biological and chemical processes. Here, we investigate ion transport through two-dimensional slits using molecular dynamics simulations. These slits with angstrom-scale height dimensions can be realistically replicated in the simulation, which leads to direct comparisons between simulations and experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
"Shuttle effect" of lithium polysulfides (LiPS) leads to a poor performance and a short cycle life of the Li-S battery, thus limiting their practical application. We demonstrate here that after coating polypropylene (PP) separator with a continuous monolayer graphene, the shuttle effect can be significantly suppressed by limiting the passage of long-chain LiPS. The graphene/PP separator can be further modified by sealing the big holes or pores on graphene with in situ polymerized nylon-66 via an interfacial polymerization reaction between diamine and adipoyl chloride supplied by the aqueous and oil phase, respectively, from each side of the membrane.
View Article and Find Full Text PDF