Publications by authors named "YanPing Cong"

Soil nutrient prediction based on near-infrared spectroscopy has become the main research direction for rapid acquisition of soil information. The development of deep learning has greatly improved the prediction accuracy of traditional modeling methods. In view of the low efficiency and low accuracy of current soil prediction models, this paper proposes a soil multi-attribute intelligent prediction method based on convolutional neural networks, by constructing a dual-stream convolutional neural network model Multi_CNN that combines one-dimensional convolution and two-dimensional convolution, the intelligent prediction of soil multi-attribute is realized.

View Article and Find Full Text PDF

As is known, cerebral stroke has become one of the main diseases endangering people's health; ischaemic strokes accounts for approximately 85% of cerebral strokes. According to research, early prediction and prevention can effectively reduce the incidence rate of the disease. However, it is difficult to predict the ischaemic stroke because the data related to the disease are multi-modal.

View Article and Find Full Text PDF

In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method.

View Article and Find Full Text PDF

Viral and synthetic single-stranded RNAs are the ligands for Toll-like receptor (TLR)7 and TLR8. However, single-stranded RNA is rapidly degraded by ubiquitous RNases, and the studies reported to date have used RNA with lipid carriers. To overcome nuclease susceptibility of RNA, we have synthesized several RNAs incorporating a range of chemical modifications.

View Article and Find Full Text PDF

Synthetic oligodeoxynucleotides containing unmethylated CpG motifs activate Toll-Like Receptor 9 (TLR9). Our previous studies have shown the role of hydrogen-bond donor and acceptor groups of cytosine and guanine in the CpG motif and identified synthetic immunostimulatory motifs. In the present study to elucidate the significance of N3-position of cytosine and N1-position of guanine in the CpG motif, we substituted C or G of a CpG dinucleotide with N3-Me-cytosine or N1-Me-guanine, respectively, in immunomodulatory oligodeoxynucleotides (IMOs).

View Article and Find Full Text PDF

Bacterial DNA and synthetic oligomers containing CpG dinucleotides activate the immune system through Toll-like receptor (TLR) 9. Here, we compare the immunostimulatory activity of three immunomers with different nucleotide sequences containing a synthetic cytosine-phosphate-2'-deoxy-7-deazaguanosine dinucleotide (CpR), called immunomodulatory oligonucleotides (IMOs), in mouse, human, and monkey systems. IMOs induced IL-12 and IFN-gamma secretion more than a control non-CpG IMO in mice.

View Article and Find Full Text PDF

Bacterial and synthetic DNAs containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system through Toll-like receptor 9 (TLR9). In the present study, we used a synthetic nucleoside with a bicyclic heterobase [1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; R] to replace the C in CpG, resulting in an RpG dinucleotide. The RpG dinucleotide was incorporated in mouse- and human-specific motifs in oligodeoxynucleotides (oligos) and 3'-3-linked oligos, referred to as immunomers.

View Article and Find Full Text PDF

We recently showed that 5'-terminal secondary structures in CpG DNA affect activity significantly more than those at the 3'-end [Biochem. Biophys. Res.

View Article and Find Full Text PDF

Oligodeoxynucleotides containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system. Our previous studies showed that the 5(')-end of a CpG oligonucleotide should be accessible for receptor recognition and subsequent immune stimulation. Activity is abrogated if this end is blocked by joining two CpG oligos through 5(')-5(') linkage.

View Article and Find Full Text PDF

Synthetic oligodeoxyribonucleotides containing CpG dinucleotides exhibit potent immunostimulatory activity in vertebrates. Although the molecular mechanisms of recognition and interaction of CpG DNA sequences with receptors are not well understood, the current evidence suggests that the receptor shows considerable selectivity for CpG DNA sequences with different preferences in mouse (GACGTT) and human (GTCGTT) species. In our continued effort to understand the chemical and structural characteristics of CpG DNA required for the immunostimulatory activity and thereby for the recognition of receptors in the immunostimulatory pathway, we examined the requirement of nucleobases in the two adjacent nucleotide positions on the 5'- and the 3'-side to the CpG dinucleotide (P(1)P(2)CGP(3)P(4)) for the immunostimulatory activity.

View Article and Find Full Text PDF

Oligodeoxyribonucleotides containing CpG dinucleotides (CpG DNAs) are currently being evaluated as novel immunomodulators in clinical trials. Recently, we showed that an accessible 5' end is required for immunostimulatory activity and blocking the 5' end of CpG DNA by conjugation of certain ligands abrogates immunostimulatory activity. Based on these results, we designed and synthesized 3'-3'-linked CpG DNAs that contained two or more identical CpG DNA segments, referred to here as 'immunomers'.

View Article and Find Full Text PDF

Bacterial and synthetic DNA containing unmethylated CpG dinucleotides activate the innate immune system and promote Th1-like immune responses. Recently, a receptor, TLR9, has been shown to recognize CpG DNA and activate immune cascade. But there have been no reports on the molecular mechanisms of recognition between CpG DNA and the receptor(s).

View Article and Find Full Text PDF

Bacterial DNA and synthetic oligonucleotides containing unmethylated CpG dinucleotides (CpG DNA) activate the vertebrate immune system and promote Th1-like immune responses. Several CpG DNAs are currently being tested in clinical trials as either alone or in combination with vaccines, antibodies, and allergens separately or as conjugates for a number of disease indications including cancers, allergies, and asthma. In this paper, we show that conjugation of an oligonucleotide and a CpG DNA through their 5'-ends (5'-5'-linked DNA) significantly reduces the immunostimulatory activity of the CpG DNA.

View Article and Find Full Text PDF

Synthetic oligodeoxyribonucleotides containing CpG-dinucleotides (CpG DNA) in specific sequence contexts activate the vertebrate immune system. We have examined the effect of 3'-deoxy-2'-5'-ribonucleoside (3'-deoxynucleoside) incorporation into CpG DNA on the immunostimulatory activity. Incorporation of 3'-deoxynucleosides results in the formation of 2'-5'-internucleotide linkages in an otherwise 3'-5'-linked CpG DNA.

View Article and Find Full Text PDF