Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs.
View Article and Find Full Text PDFAims: Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro.
View Article and Find Full Text PDFTransmembrane serine protease 6 (Tmprss6) has been correlated with the occurrence and progression of tumors, but any specific molecular mechanism linking the enzyme to oncogenesis has remained elusive thus far. In the present study, we found that Tmprss6 markedly inhibited mouse neuroblastoma N2a (neuro-2a) cell proliferation and tumor growth in nude mice. Tmprss6 inhibits Smad1/5/8 phosphorylation by cleaving the bone morphogenetic protein (BMP) co-receptor, hemojuvelin (HJV).
View Article and Find Full Text PDFBackground: Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated.
View Article and Find Full Text PDFIron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention.
View Article and Find Full Text PDFIron is essential for life, and the dysregulation of iron homeostasis can lead to severe pathological changes in the neurological system [...
View Article and Find Full Text PDFFerroptosis is an iron-dependent, lipid peroxidation-driven cell death pathway, while Parkinson's disease (PD) patients exhibit iron deposition and lipid peroxidation in the brain. Thus, the features of ferroptosis highly overlap with the pathophysiological features of PD. Despite this superficial connection, the possible role(s) of ferroptosis-related (Fr) proteins in dopaminergic neurons and/or glial cells in the substantia nigra (SN) in PD have not been examined in depth.
View Article and Find Full Text PDFAims: Adult hippocampal neurogenesis is an important player in brain homeostasis and its impairment participates in neurological diseases. Iron overload has emerged as an irreversible factor of brain aging, and is also closely related to degenerative disorders, including cognitive dysfunction. However, whether brain iron overload alters hippocampal neurogenesis has not been reported.
View Article and Find Full Text PDFThe incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment.
View Article and Find Full Text PDFIron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1IRP2 ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2 fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons.
View Article and Find Full Text PDFAntioxidants (Basel)
February 2023
CHIR99021 is an aminopyrimidine derivative, which can efficiently inhibit the activity of glycogen synthesis kinase 3α (GSK-3α) and GSK-3β. As an essential component of stem cell culture medium, it plays an important role in maintaining cell stemness. However, the mechanism of its role is not fully understood.
View Article and Find Full Text PDFCeruloplasmin (CP) plays an important role in maintaining iron homeostasis. Cp gene knockout (Cp) mice develop a neurodegenerative disease with aging and show iron accumulation in the brain. However, iron deficiency has also been observed in 3 M Cp mice.
View Article and Find Full Text PDFBackground: Glioma is the most common primary malignant brain tumor with high mortality and poor prognosis. Hepcidin is a fascinating iron metabolism regulator. However, the prognostic value of hepcidin HAMP in gliomas and its correlation with immune cell infiltration remain unclear.
View Article and Find Full Text PDFThe functional activities of gold nanoparticles (AuNPs) on biological systems depend on their physical-chemical properties and their surface functionalizations. Within a biological environment and depending on their surface characteristics, NPs can adsorb biomolecules (mostly proteins) present in the microenvironment, thereby forming a dynamic biomolecular corona on the surface. The presence of this biocorona changes the physical-chemical and functional properties of the NPs and how it interacts with cells.
View Article and Find Full Text PDFTransl Neurodegener
August 2022
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases.
View Article and Find Full Text PDFThe global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInPS (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (K) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice.
View Article and Find Full Text PDFBrain iron dysregulation associated with aging is closely related to motor and cognitive impairments in neurodegenerative diseases. The regulation of iron traffic at the blood-brain barrier (BBB) is crucial to maintain brain iron homeostasis. However, the specific mechanism has not been clarified in detail.
View Article and Find Full Text PDFThe relationship between cardiovascular diseases and iron disorders has gained increasing attention; however, the effects of hypotensive drugs on iron metabolic alterations in hypertension are not well understood. The purpose of this study was to investigate iron metabolic changes after prazosin treatment of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats. Our second objective was to examine the effects of hypertension and anti-hypertensive drugs on bone formation and resorption.
View Article and Find Full Text PDFCaffeine is well-known as a psychostimulant, and it can also be beneficial in numerous diseases such as diabetes and different types of cancer. Previous studies have shown that caffeine can have a protective role in bacterial infection-induced inflammation and hyperoxia-mediated pulmonary inflammation. Hepcidin, which is regulated by the IL-6/STAT3 inflammation pathway, is a peptide hormone that maintains systemic iron homeostasis.
View Article and Find Full Text PDFBlood-brain barrier (BBB) breakdown, a characteristic feature of ischemic stroke, contributes to poor patient outcomes. Brain microvascular endothelial cells (BMVECs) are a key component of the BBB and dysfunction or death of these cells following cerebral ischemia reperfusion (I/R) injury can disrupt the BBB, leading to leukocyte infiltration, brain edema and intracerebral hemorrhage. We previously demonstrated that mitochondrial ferritin (FtMt) can alleviate I/R-induced neuronal ferroptosis by inhibiting inflammation-regulated iron deposition.
View Article and Find Full Text PDFBrain iron overload is positively correlated with the pathogenesis of Alzheimer's disease (AD). However, the role of iron in AD pathology is not completely understood. Furin is the first identified mammalian proprotein convertase that catalyzes the proteolytic maturation of large numbers of prohormones and proproteins.
View Article and Find Full Text PDFFront Bioeng Biotechnol
April 2022
As hematopoietic stem cells can differentiate into all hematopoietic lineages, mitigating the damage to hematopoietic stem cells is important for recovery from overdose radiation injury. Cells in bone marrow microenvironment are essential for hematopoietic stem cells maintenance and protection, and many of the paracrine mediators have been discovered in shaping hematopoietic function. Several recent reports support exosomes as effective regulators of hematopoietic stem cells, but the role of osteoblast derived exosomes in hematopoietic stem cells protection is less understood.
View Article and Find Full Text PDF