Acute spontaneous intracerebral hemorrhage (ICH) is a life-threatening disease. It is often accompanied by severe neurological sequelae largely caused by the loss of integrity of the neural circuits. However, these neurological sequelae have few strong medical interventions.
View Article and Find Full Text PDFMultiple chromosome aberrations are responsible for tumorigenesis of esophagus squamous cell carcinoma (ESCC). To characterize genetic alterations by comparative genomic hybridization (CGH) and their relation to ESCC, We enrolled 54 members with ESCC from Kazakh's patients. We found that the deletions of 3p (P = 0.
View Article and Find Full Text PDFPulmonary fibrosis (PF) is a chronic lung disease. The transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis. Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to be a modulator of the molecular aspects of the fibrosis pathway.
View Article and Find Full Text PDFThe aim of the present study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) on the expression of the autophagy-associated proteins, microtubule-associated protein light chain 3 (LC-3) and autophagy-related gene Beclin-1 (Beclin-1), in alveolar macrophages (AMs) in a rat model of silicosis. Furthermore, the study investigated the molecular mechanisms underlying the effects of BMSC treatment. A population of 60 adult female Sprague-Dawley (SD) rats were allocated at random into three groups, namely the control, model and BMSC treatment groups (n=20 per group).
View Article and Find Full Text PDFTraumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death, leading to long‑term cognitive deficits, and effective therapeutic strategies targeting neuronal death remain elusive. The present study aimed to determine whether the administration of resveratrol (100 mg/kg) was able to significantly enhance functional recovery in a rat model of TBI and whether resveratrol treatment was able to upregulate synaptic protein expression and suppress post‑TBI neuronal autophagy. The results demonstrated that daily treatment with resveratrol attenuated TBI‑induced brain edema and improved spatial cognitive function and neurological impairment in rats.
View Article and Find Full Text PDFPrevious research has demonstrated that traumatic brain injury (TBI) activates autophagy and a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of this cascade. In the present study, we investigated the hypothesis that resveratrol (RV), a natural polyphenolic compound with potent multifaceted properties, alleviates brain damage mediated by TLR4 following TBI. Adult male Sprague Dawley rats, subjected to controlled cortical impact (CCI) injury, were intraperitoneally injected with RV (100 mg/kg, daily for 3 days) after the onset of TBI.
View Article and Find Full Text PDFIn previous studies, we demonstrated that rhein lysinate (RHL), the salt of rhein and lysine that is easily dissolved in water, inhibited the growth of tumor cells derived from breast and ovarian cancer, hepatocellular carcinoma, cervical cancer and lung carcinoma. Based on these observations, human glioma U87 cells and a xenograft model in BALB/c nude mice were used to examine the antitumor activity of RHL against human glioma. Notably, RHL statistically significantly suppressed the growth of human glioma U87 xenografts in BALB/c nude mice.
View Article and Find Full Text PDFThe P2X7 inhibitor, brilliant blue G (BBG), has been reported as a neuroprotective drug against a variety of disorders, including neuropathic pain and brain ischemia. Currently, no studies have examined the potential for BBG to provide neuroprotection in animal models of TBI. The aim of the present study was to investigate the neuroprotective effect of BBG on TBI and to determine the underlying mechanisms.
View Article and Find Full Text PDFThe antimalarial drug, chloroquine (CQ), has been reported as an autophagy inhibitor in a variety of disorders, including Alzheimer's disease and brain ischemia. To the best of our knowledge, no studies to date have examined the potential for CQ to provide neuroprotection in animal models of traumatic brain injury (TBI). The aim of this study was to investigate the neuroprotective actions of CQ in TBI and to determine the mechanisms underlying this effect.
View Article and Find Full Text PDFConnexins, gap junction proteins, have short half‑lives of only a few hours; therefore, degradation of these proteins can rapidly modulate their function. Autophagy is a type of degradation pathway that has been implicated in several diseases and was reported to be induced following traumatic brain injury (TBI). The aim of the present study was to investigate the involvement of neuronic autophagy in proteolysis of phosphorylated connexin 43 (p‑Cx43) in hippocampal astrocytes following TBI in rats.
View Article and Find Full Text PDFGap junctions are conductive channels formed by membrane proteins termed connexins, which permit the intercellular exchange of metabolites, ions and small molecules. Previous data demonstrated that traumatic brain injury (TBI) activates autophagy and increases microtubule‑associated protein 1 light chain 3 (LC3) immunostaining predominantly in neurons. Although previous studies have identified several extracellular factors that modulate LC3 expression, knowledge of the regulatory network controlling LC3 in health and disease remains incomplete.
View Article and Find Full Text PDFSilicosis is a well-known occupational disease, characterized by epithelial injury, fibroblast proliferation, expansion of the lung matrix and dyspnea. At present, no effective treatment methods for silicosis have been identified. The present study aimed to investigate the protective potential of exogenous bone marrow-derived mesenchymal stem cell (BMSC) transplantation on experimental silica-induced pulmonary fibrosis in rats and analyze the underlying paracrine mechanisms associated with its therapeutic effects.
View Article and Find Full Text PDFDiffuse brain injury (DBI) is a leading cause of mortality and disability among young individuals and adults worldwide. In specific cases, DBI is associated with permanent spatial learning dysfunction and motor deficits due to primary and secondary brain damage. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a major complex that produces reactive oxygen species (ROS) during the ischemic period.
View Article and Find Full Text PDFBackground: Activation of c-Jun NH(2)-terminal kinase (JNK) has been implicated in neuron apoptosis as well as autophagy in response to various stressors after traumatic brain injury (TBI). However, the underlying molecular pathway remains unclear. Our study assessed whether JNK-mediated p53 phosphorylation might be an important mechanism for enhancing neuron autophagy in response to TBI.
View Article and Find Full Text PDFZhonghua Wai Ke Za Zhi
February 2012
Objective: To study the effect and potential mechanism of expression of c-jun N-terminal kinase (JNK) signal pathway on neuron autophagy after diffuse brain injury (DBI).
Methods: Male Sprague Dawley rats (n = 216) were randomly divided into four groups: DBI group (n = 54), SP600125 intervene group (n = 54), DMSO group (n = 54) and sham operation group (n = 54). DBI rat model was established according to the description of Marmarou DBI.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue
April 2010
Objective: To study the protective effect of edaravone on severe traumatic brain injury (TBI) and its potential mechanism.
Methods: Two hundred and seventy-three male Sprague-Dawley (SD) rats were divided randomly into four groups: control group (n=45), model group (n=88), low-dose edaravone treatment group (n=72), high-dose edaravone treatment group (n=68). TBI rat model was reproduced by weight-dropping injury.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
September 2006
Objective: To explore the effect of N-acetyl L-cysteine (NAC) on expressions of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) in lung fibroblasts of SiO(2) exposed rats.
Methods: Seventy-five Wistar rats were divided randomly into three groups. The control group was administered with normal Saline.