By collecting the atmospheric precipitation, surface water, and groundwater in the Inner Mongolia section of the Yellow River Basin in July 2021 (wet season), October (normal season), and April 2022 (dry season), stable isotope technology was used to analyze the temporal and spatial changes in hydrogen and oxygen stable isotopes in the "three rivers" of the basin, and the MixSIAR mixing model was used to reveal the water body transformation relationship. The results showed that the mean difference in the groundwater isotope was small in the abundance period, flat period, and dry period in the Mongolia section of the Yellow River Basin. The groundwater regeneration was slow, the retention time was long, the seasonal variation was not obvious, and the D value of surface water was higher in the abundance period than in the normal period and dry period.
View Article and Find Full Text PDFThe Yellow River in Inner Mongolia was selected as the study area in this study. In July (wet season) and October (dry season) of 2021, the acquisition of seasonal rivers, the Yellow River tributaries and precipitation, the Yellow River, Wuliangsuhai, Lake Hasuhai, Lake Daihai, an irrigation canal system, and underground water and sea water samples were collected to test the water chemical composition and hydrogen and oxygen isotopic values of different water types. Using the Piper triplot, Gibbs plot, ion ratio, and MixSIAR model methods, the evolution of water chemistry in the Mongolian section of the Yellow River Basin was analyzed, and the transformation relationship between precipitation, surface water, and groundwater was revealed.
View Article and Find Full Text PDFZhongguo Yi Xue Ke Xue Yuan Xue Bao
April 2016
Objective: To study on the expression patterns of proteins associated with cell junctions in the developing mouse testes.
Method: The expression levels of reproductive related cell lines spermatogonia cell line GC1 spg, spermatocyte cell line GC2 spg, leydig cell line TM3, and sertoli cell line TM4, primary sertoli cells, and 1-6-week mouse testes were analyzed using Western blot.
Results: The sertoli cell junction-associated membrane proteins adhesion molecule A, Occludin and Claudin, and the sertoli-germ cell junction-associated membrane proteins junctional adhesion molecule C, Nectin-3, and E-cadherin were stage-specific in the seminiferous tubules in the mouse testes.
The middle-frequency sensorineural hearing loss (MFSNHL) is rare among hereditary non-syndromic hearing loss. To date, only three genes are reported to be associated with MFSNHL, including TECTA, EYA4 and COL11A2. In this report, we analyzed and explored the clinical audiological characteristics and the causative gene of a Chinese family named HG-Z087 with non-syndromic autosomal dominant inherited MFSNHL.
View Article and Find Full Text PDF